Global and Regional Discrepancies between Early-Twentieth-Century Coastal Air and Sea Surface Temperature Detected by a Coupled Energy-Balance Analysis

Duo Chan aDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Duo Chan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8573-5115
,
Geoffrey Gebbie aDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Geoffrey Gebbie in
Current site
Google Scholar
PubMed
Close
, and
Peter Huybers bDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Peter Huybers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C]) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends.

Significance Statement

To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Duo Chan, duo.chan@whoi.edu

Abstract

A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C]) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends.

Significance Statement

To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Duo Chan, duo.chan@whoi.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.08 MB)
Save
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1975: Interactions of sea and atmosphere. Rev. Geophys., 13, 720726, https://doi.org/10.1029/RG013i003p00720.

  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Search Google Scholar
    • Export Citation
  • Carella, G., J. Kennedy, D. I. Berry, S. Hirahara, C. J. Merchant, S. Morak-Bozzo, and E. C. Kent, 2018: Estimating sea surface temperature measurement methods using characteristic differences in the diurnal cycle. Geophys. Res. Lett., 45, 363371, https://doi.org/10.1002/2017GL076475.

    • Search Google Scholar
    • Export Citation
  • Chan, D., 2021: Combining statistical, physical, and historical evidence to improve historical sea-surface temperature records. Harv. Data Sci. Rev., 3 (1), https://doi.org/10.1162/99608f92.edcee38f.

    • Search Google Scholar
    • Export Citation
  • Chan, D., and P. Huybers, 2019: Systematic differences in bucket sea surface temperature measurements among nations identified using a linear-mixed-effect method. J. Climate, 32, 25692589, https://doi.org/10.1175/JCLI-D-18-0562.1.

    • Search Google Scholar
    • Export Citation
  • Chan, D., and P. Huybers, 2020: Systematic differences in bucket sea surface temperatures caused by misclassification of engine room intake measurements. J. Climate, 33, 77357753, https://doi.org/10.1175/JCLI-D-19-0972.1.

    • Search Google Scholar
    • Export Citation
  • Chan, D., and P. Huybers, 2021: Correcting observational biases in sea surface temperature observations removes anomalous warmth during World War II. J. Climate, 34, 45854602, https://doi.org/10.1175/JCLI-D-20-0907.1.

    • Search Google Scholar
    • Export Citation
  • Chan, D., E. C. Kent, D. I. Berry, and P. Huybers, 2019: Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature, 571, 393397, https://doi.org/10.1038/s41586-019-1349-2.

    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., R. Rohde, and Z. Hausfather, 2018: Evaluating biases in sea surface temperature records using coastal weather stations. Quart. J. Roy. Meteor. Soc., 144, 670681, https://doi.org/10.1002/qj.3235.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., 2008: Review of air-sea transfer processes. ECMWF Workshop on Ocean-Atmosphere Interactions, Reading, United Kingdom, ECMWF, 7–24.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121, 319367, https://doi.org/10.1002/qj.49712152206.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, and F. E. Kates, 1984: Worldwide marine temperature fluctuations 1856–1981. Nature, 310, 670673, https://doi.org/10.1038/310670a0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., O. Boucher, A. Colman, and D. E. Parker, 2018: Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv., 4, eaao5297, https://doi.org/10.1126/sciadv.aao5297.

    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Search Google Scholar
    • Export Citation
  • Fuller, W. A., 2009: Measurement Error Models. John Wiley and Sons, 480 pp.

  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hausfather, Z., K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson, and R. Rohde, 2017: Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv., 3, e1601207, https://doi.org/10.1126/sciadv.1601207.

    • Search Google Scholar
    • Export Citation
  • Haustein, K., and Coauthors, 2019: A limited role for unforced internal variability in twentieth-century warming. J. Climate, 32, 48934917, https://doi.org/10.1175/JCLI-D-18-0555.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33, 269282, https://doi.org/10.1007/s00376-015-5194-4.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., H. F. Diaz, and G. Kukla, 1988: Urbanization: Its detection and effect in the United States climate record. J. Climate, 1, 10991123, https://doi.org/10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., R. O. Smith, and N. A. Rayner, 2012: Using AATSR data to assess the quality of in situ sea-surface temperature observations for climate studies. Remote Sens. Environ., 116, 7992, https://doi.org/10.1016/j.rse.2010.11.021.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick, 2019a: An ensemble data set of sea surface temperature change from 1850: The Met Office Hadley Centre HadSST. 4.0.0.0 data set. J. Geophys. Res. Atmos., 124, 77197763, https://doi.org/10.1029/2018JD029867.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick, 2019b: The Met Office Hadley Centre HadSST. 4.0.1.0 data set. Met Office Hadley Centre, accessed 19 May 2022, https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html.

  • Kent, E. C., and P. K. Taylor, 2006: Toward estimating climatic trends in SST. Part I: Methods of measurement. J. Atmos. Oceanic Technol., 23, 464475, https://doi.org/10.1175/JTECH1843.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and D. I. Berry, 2008: Assessment of the marine observing system (ASMOS): Final report. National Oceanography Centre Southampton Research and Consultancy Rep. 32, 55 pp.

  • Kent, E. C., and J. J. Kennedy, 2021: Historical estimates of surface marine temperatures. Annu. Rev. Mar. Sci., 13, 283311, https://doi.org/10.1146/annurev-marine-042120-111807.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., J. J. Kennedy, D. I. Berry, and R. O. Smith, 2010: Effects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdiscip. Rev.: Climate Change, 1, 718728, https://doi.org/10.1002/wcc.55.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., N. A. Rayner, D. I. Berry, M. Saunby, B. I. Moat, J. J. Kennedy, and D. E. Parker, 2013: Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set. J. Geophys. Res. Atmos., 118, 12811298, https://doi.org/10.1002/jgrd.50152.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Coauthors, 2017: A call for new approaches to quantifying biases in observations of sea surface temperature. Bull. Amer. Meteor. Soc., 98, 16011616, https://doi.org/10.1175/BAMS-D-15-00251.1.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., 2015: Weakening of the global atmospheric circulation with global warming. Climate Dyn., 45, 975988, https://doi.org/10.1007/s00382-014-2337-8.

    • Search Google Scholar
    • Export Citation
  • Lee, D. E., Z. Liu, and Y. Liu, 2008: Beyond thermal interaction between ocean and atmosphere: On the extratropical climate variability due to the wind-induced SST. J. Climate, 21, 20012018, https://doi.org/10.1175/2007JCLI1532.1.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, D. J. Brouillette, and S. K. Miller, 2021: Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371, 10141019, https://doi.org/10.1126/science.abc5810.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, https://doi.org/10.1175/2008JCLI2263.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., B. E. Gleason, J. J. Rennie, and J. H. Lawrimore, 2018a: Global historical climatology network—Monthly (GHCN-M), version 4. NOAA/National Climatic Data Center, accessed 19 May 2022, https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly.

  • Menne, M. J., C. N. Williams Jr., B. E. Gleason, J. J. Rennie, and J. H. Lawrimore, 2018b: The Global Historical Climatology Network monthly temperature dataset, version 4. J. Climate, 31, 98359854, https://doi.org/10.1175/JCLI-D-18-0094.1.

    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., and Coauthors, 2019: Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci., 6, 432, https://doi.org/10.3389/fmars.2019.00432.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2021: Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 data set. J. Geophys. Res. Atmos., 126, e2019JD032352, https://doi.org/10.1029/2019JD032352.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for Physical Applications. Cambridge University Press, 583 pp.

  • Pfeiffer, M., J. Zinke, W.-C. Dullo, D. Garbe-Schönberg, M. Latif, and M. E. Weber, 2017: Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates. Sci. Rep., 7, 14434, https://doi.org/10.1038/s41598-017-14352-6.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinf. Geostat., 1, 20100, https://doi.org/10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165188, https://doi.org/10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2002: Bias corrections for historical sea surface temperatures based on marine air temperatures. J. Climate, 15, 7387, https://doi.org/10.1175/1520-0442(2002)015<0073:BCFHSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp.

  • Thomas, B. R., E. C. Kent, V. R. Swail, and D. I. Berry, 2008: Trends in ship wind speeds adjusted for observation method and height. Int. J. Climatol., 28, 747763, https://doi.org/10.1002/joc.1570.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, https://doi.org/10.1038/nature06982.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Trewin, B., 2010: Exposure, instrumentation, and observing practice effects on land temperature measurements. Wiley Interdiscip. Rev.: Climate Change, 1, 490506, https://doi.org/10.1002/wcc.46.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 530 530 21
Full Text Views 202 202 6
PDF Downloads 220 220 6