Delayed Impacts of ENSO on the Frequency of Summer Extreme Hot Days in the Asian Monsoon Region. Part I: Observation, Historical Simulation, and Future Projection in CMIP6 Models

Jiaxin Ye aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China
cDepartment of Atmospheric and Oceanic Sciences, and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Jiaxin Ye in
Current site
Google Scholar
PubMed
Close
,
Chaoxia Yuan aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China
bApplication Laboratory, Japan Agency of Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Chaoxia Yuan in
Current site
Google Scholar
PubMed
Close
,
Mengzhou Yang aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Mengzhou Yang in
Current site
Google Scholar
PubMed
Close
,
Xinyu Lu aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xinyu Lu in
Current site
Google Scholar
PubMed
Close
,
Jing-Jia Luo aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jing-Jia Luo in
Current site
Google Scholar
PubMed
Close
, and
Toshio Yamagata aKey Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China
bApplication Laboratory, Japan Agency of Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Toshio Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Significant anomalies in frequency of summer extreme hot days (SEHDs) are broadly observed in the Asian monsoon region (AMR) in the post-ENSO summers. The delayed ENSO impacts are mainly conveyed by provoking the Indo-western Pacific Ocean capacitor (IPOC) effect that maintains the anomalous anticyclone in the western North Pacific. The related diabatic heating anomaly can trigger the westward-propagating Rossby wave to the Indian subcontinent, which increases the geopotential heights, reduces the cloud cover, and thus increases the seasonal surface temperature and SEHD frequency in the southern AMR. Besides, the reduced atmospheric moisture in the western North Pacific hinders the northward propagation of intraseasonal oscillation (ISO) and modulates the occurrence frequency of individual ISO phases, contributing to the significantly increased/decreased SEHDs in eastern China/Hokkaido, Japan, in the post–El Niño summers. The 25-model-ensemble mean of CMIP6 historical runs can reproduce well the observed SEHD anomalies in the southern AMR in the post-ENSO summers mainly due to the realistic simulation of ENSO impacts on the seasonal surface temperature, although a large intermodel spread exists due to different strengths of IPOC effect in each model owing to model biases in the mean state of the eastern tropical Pacific, the ENSO variance, and teleconnection to the Indian Ocean. Furthermore, future projections under the SSP5-8.5 scenario show that the delayed ENSO impacts on the southern AMR remain stable under global warming via a similar mechanism as in the observations and historical runs.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaoxia Yuan, chaoxia.yuan@nuist.edu.cn

Abstract

Significant anomalies in frequency of summer extreme hot days (SEHDs) are broadly observed in the Asian monsoon region (AMR) in the post-ENSO summers. The delayed ENSO impacts are mainly conveyed by provoking the Indo-western Pacific Ocean capacitor (IPOC) effect that maintains the anomalous anticyclone in the western North Pacific. The related diabatic heating anomaly can trigger the westward-propagating Rossby wave to the Indian subcontinent, which increases the geopotential heights, reduces the cloud cover, and thus increases the seasonal surface temperature and SEHD frequency in the southern AMR. Besides, the reduced atmospheric moisture in the western North Pacific hinders the northward propagation of intraseasonal oscillation (ISO) and modulates the occurrence frequency of individual ISO phases, contributing to the significantly increased/decreased SEHDs in eastern China/Hokkaido, Japan, in the post–El Niño summers. The 25-model-ensemble mean of CMIP6 historical runs can reproduce well the observed SEHD anomalies in the southern AMR in the post-ENSO summers mainly due to the realistic simulation of ENSO impacts on the seasonal surface temperature, although a large intermodel spread exists due to different strengths of IPOC effect in each model owing to model biases in the mean state of the eastern tropical Pacific, the ENSO variance, and teleconnection to the Indian Ocean. Furthermore, future projections under the SSP5-8.5 scenario show that the delayed ENSO impacts on the southern AMR remain stable under global warming via a similar mechanism as in the observations and historical runs.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaoxia Yuan, chaoxia.yuan@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 5.56 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S. I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S. I., and H. Bong, 2016: Inter-decadal change in El Niño-Southern Oscillation examined with Bjerknes stability index analysis. Climate Dyn., 47, 967979, https://doi.org/10.1007/s00382-015-2883-8.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Climate Dyn., 53, 72157234, https://doi.org/10.1007/s00382-017-3603-3.

    • Search Google Scholar
    • Export Citation
  • Bjerkness, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and Coauthors, 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate Past, 16, 17771805, https://doi.org/10.5194/cp-16-1777-2020.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, https://doi.org/10.1038/nature05053.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2016: Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China. J. Climate, 29, 69096921, https://doi.org/10.1175/JCLI-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R. D., Z. P. Wen, and R. Y. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over northeast Asia in the midsummer of 2018. Atmos. Ocean. Sci. Lett., 12, 238245, https://doi.org/10.1080/16742834.2019.1611170.

    • Search Google Scholar
    • Export Citation
  • Chen, X., C. Li, and X. Li, 2020: Influences of ENSO on boreal summer intraseasonal oscillation over the western Pacific in decaying summer. Climate Dyn., 54, 34613473, https://doi.org/10.1007/s00382-020-05183-9.

    • Search Google Scholar
    • Export Citation
  • Choi, Y.-W., and J.-B. Ahn, 2019: Possible mechanisms for the coupling between late spring sea surface temperature anomalies over tropical Atlantic and East Asian summer monsoon. Climate Dyn., 53, 69957009, https://doi.org/10.1007/s00382-019-04970-3.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S. P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. Johnson, and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J. Climate, 25, 17221744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dai, X. G., C. B. Fu, and P. Wang, 2005: Interdecadal change of atmospheric stationary waves and North China drought. Chin. Phys., 14, 850, https://doi.org/10.1088/1009-1963/14/4/038.

    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, D. Gu, A. Lin, and C. Li, 2020: Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn., 54, 37513764, https://doi.org/10.1007/s00382-020-05203-8.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, B. Wang, Ed., Praxis, 131–202.

  • Ding, Y. H., and Y. Y. Liu, 2008: A study of the teleconnection in the Asian-Pacific monsoon region. Acta Meteor. Sin., 66, 670682, https://doi.org/10.11676/qxxb2008.062.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fredriksen, H. B., J. Berner, A. C. Subramanian, and A. Capotondi, 2020: How does El Niño-Southern Oscillation change under global warming—A first look at CMIP6. Geophys. Res. Lett., 47, e2020GL090640, https://doi.org/10.1029/2020GL090640.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., Z. Lin, and T. Wang, 2021: Preconditions for CMIP6 models to reproduce the relationship between wintertime ENSO and subsequent East Asian summer rainfall. Climate Res., 84, 133144, https://doi.org/10.3354/cr01663.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2014: Workshop on analyses, dynamics, and modeling of large-scale meteorological patterns associated with extreme temperature and precipitation events. US CLIVAR Rep. 2014-2, US CLIVAR Project Office, Washington, DC, 42 pp., https://doi.org/10.5065/D6ZK5F2N.

  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., J.-Y. Lee, K.-J. Ha, and C.-H. Tsou, 2017: Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia. J. Climate, 30, 71917211, https://doi.org/10.1175/JCLI-D-16-0505.1.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, P. Huang, Y. Kosaka, and S. P. Xie, 2021: Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci., 14, 377382, https://doi.org/10.1038/s41561-021-00730-3.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Huang, D. Q., J. Zhu, Y. C. Zhang, and A. N. Huang, 2014: The different configurations of the East Asian polar front jet and subtropical jet and the associated rainfall anomalies over eastern China in summer. J. Climate, 27, 82058220, https://doi.org/10.1175/JCLI-D-14-00067.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte, et al., Eds., Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.

  • Jiang, L., and T. Li, 2021: Impacts of tropical North Atlantic and equatorial Atlantic SST anomalies on ENSO. J. Climate, 34, 56355655, https://doi.org/10.1175/JCLI-D-20-0835.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, K. Hu, R. Wu, H. Gong, X. Chen, and W. Tao, 2017: Diverse relationship between ENSO and the northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace. J. Climate, 30, 109127, https://doi.org/10.1175/JCLI-D-16-0365.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., S. Yang, J. He, J. Li, and J. Liang, 2008: Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China. Meteor. Atmos. Phys., 100, 101119, https://doi.org/10.1007/s00703-008-0298-3.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. Li, and F. F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J. Climate, 26, 45674582, https://doi.org/10.1175/JCLI-D-12-00324.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Sode, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S. P. Xie, N. C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., 2011: An empirical model of decadal ENSO variability. Climate Dyn., 39, 23772391, https://doi.org/10.1007/s00382-012-1424-y.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., F. F. Jin, and S. I. An, 2009a: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., S. I. An, Y. G. Ham, and I. S. Kang, 2009b: Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations. Theor. Appl. Climatol., 100, 275282, https://doi.org/10.1007/s00704-009-0183-0.

    • Search Google Scholar
    • Export Citation
  • Lau, N., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Li, Q. X., and J. Y. Huang, 2011: Threshold values on extreme high temperature events in China. J. Appl. Meteor. Sci., 22, 138144.

  • Lin, A., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 63046320, https://doi.org/10.1175/2008JCLI2331.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., 2019: Long-lead ENSO control of the boreal summer intraseasonal oscillation in the East Asian-western North Pacific region. npj Climate Atmos. Sci., 2, 31, https://doi.org/10.1038/s41612-019-0088-2.

    • Search Google Scholar
    • Export Citation
  • Lin, R. P., F. Zheng, and X. Dong, 2018: ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci., 35, 495506, https://doi.org/10.1007/s00376-017-7133-z.

    • Search Google Scholar
    • Export Citation
  • Lin, S., M. Luo, R. J. Walker, X. Liu, S. A. Hwan, and R. Chinery, 2009: Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology, 20, 738746, https://doi.org/10.1097/EDE.0b013e3181ad5522.

    • Search Google Scholar
    • Export Citation
  • Loughran, T. F., S. E. Perkins-Kirkpatrick, L. V. Alexander, and A. J. Pitman, 2017: No significant difference between Australian heat wave impacts of Modoki and eastern Pacific El Niño. Geophys. Res. Lett., 44, 51505157, https://doi.org/10.1002/2017GL073231.

    • Search Google Scholar
    • Export Citation
  • Lu, X., C. Yuan, M. Yang, T. Doi, M. Wahiduzzaman, and J. J. Luo, 2021: Prediction of summer extreme hot days in China using the SINTEX-F2. Int. J. Climatol., 41, 49664976, https://doi.org/10.1002/joc.7110.

    • Search Google Scholar
    • Export Citation
  • Lu, X., C. Yuan, J. Luo, and T. Yamagata, 2023: Delayed impacts of ENSO on the frequency of summer extreme hot day in the Asian monsoon region. Part II: Implication for seasonal prediction. J. Climate, 36, 31133127, https://doi.org/10.1175/JCLI-D-21-0668.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, https://doi.org/10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., J. Y. Lee, C. X. Yuan, W. Sasaki, S. Masson, S. K. Behera, Y. Masumoto, and T. Yamagata, 2016: Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. Indo-Pacific Climate Variability and Predictability, K. B. Swadhin and T. Yamagata, Eds., World Scientific, 63–107.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., and J. Sun, 2022: Causes of interannual variability of summer precipitation intraseasonal oscillation intensity over southwest China. J. Climate, 35, 37053723, https://doi.org/10.1175/JCLI-D-21-0627.1.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, S. B. Ratna, M. Rajeevan, and T. Yamagata, 2016: Anatomy of Indian heatwaves. Sci. Rep., 6, 24395, https://doi.org/10.1038/srep24395.

    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Search Google Scholar
    • Export Citation
  • Roy, I., R. G. Tedeschi, and M. Collins, 2019: ENSO teleconnections to the Indian summer monsoon under changing climate. Int. J. Climatol., 39, 30313042, https://doi.org/10.1002/joc.5999.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in impacts of climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230, https://doi.org/10.1017/CBO9781139177245.006.

  • Srinivas, G., J. S. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. S. R. Prasad, 2018: Influence of the Pacific-Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 39433958, https://doi.org/10.1175/JCLI-D-17-0408.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, E. I., G. Fischer, H. van Velthuizen, C. Walter, and F. Ewert, 2013: Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteor., 170, 206215, https://doi.org/10.1016/j.agrformet.2011.09.002.

    • Search Google Scholar
    • Export Citation
  • Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun., 8, 15531, https://doi.org/10.1038/ncomms15531.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131, 781804, https://doi.org/10.1256/qj.04.70.

    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., and Coauthors, 2018: Extreme heat in India and anthropogenic climate change. Nat. Hazards Earth Syst. Sci., 18, 365381, https://doi.org/10.5194/nhess-18-365-2018.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1923: Correlation in seasonal variations of weather, VIII: A preliminary study of world weather. Mem. India Meteor. Dep., 24, 75131.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation in seasonal variations of Weather, IX: A Further Study of World Weather. Mem. India Meteor. Dep., 24, 275333.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wang, B., and H. Lin, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J.-Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Search Google Scholar
    • Export Citation
  • Wang, P., C. Y. Tam, and K. Xu, 2019: El Niño-East Asian monsoon teleconnection and its diversity in CMIP5 models. Climate Dyn., 53, 64176435, https://doi.org/10.1007/s00382-019-04938-3.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. N. Palmer, T. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and prospects for prediction. J. Geophys. Res., 103, 451510, https://doi.org/10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 123129, https://doi.org/10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., Y. Du, G. Huang, X. T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., S. P. Xie, Y. Du, and H. Tokinaga, 2015: Interdecadal difference of interannual variability characteristics of South China Sea SSTs associated with ENSO. J. Climate, 28, 71457160, https://doi.org/10.1175/JCLI-D-15-0057.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y. Ham, and J. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, https://doi.org/10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Search Google Scholar
    • Export Citation
  • Zhai, P. M., A. J. Sun, F. M. Ren, X. N. Liu, B. Gao, and Q. Zhang, 1999: Changes of climate extremes in China. Climatic Change, 42, 203218, https://doi.org/10.1023/A:1005428602279.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., G. Zeng, X. Yang, and Z. H. Jiang, 2021: Future changes in extreme high temperature over China at 1.5°C–5°C global warming based on CMIP6 simulations. Adv. Atmos. Sci., 38, 253267, https://doi.org/10.1007/s00376-020-0182-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X, L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y. M., C. Qian, W. J. Zhang, D. He, and Y. J. Qi, 2021: Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: Evaluation and projection. Int. J. Climatol., 41, 53685385, https://doi.org/10.1002/joc.7134.

    • Search Google Scholar
    • Export Citation
  • Zheng, B., D. Gu, A. Lin, D. Peng, C. Li, and Y. Huang, 2022: Structures and mechanisms of heat waves related to quasi-biweekly variability over southern China. J. Climate, 35, 79817994, https://doi.org/10.1175/JCLI-D-22-0282.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., L. W. Zou, and X. L. Chen, 2019: Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate Change Res., 15, 445456, https://doi.org/10.12006/j.issn.1673-1719.2019.193.

    • Search Google Scholar
    • Export Citation
  • Zhu, B. Y., B. Sun, and H. J. Wang, 2020: Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol., 40, 841857, https://doi.org/10.1002/joc.6242.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y. M., X. Q. Yang, X. Y. Chen, S. S. Zhao, and X. G. Sun, 2007: Interdecadal variation of the relationship between ENSO and summer interannual climate variability in China. J. Trop. Meteor., 13, 132136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1533 1063 139
Full Text Views 356 179 7
PDF Downloads 414 180 9