A Physical Explanation for Ocean Air–Water Warming Differences under CO2-Forced Warming

Mark T. Richardson aJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Mark T. Richardson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7063-631X
Restricted access

Abstract

Modeled global warming is often quantified using global near-surface air temperature (Tas). Meanwhile, long-term temperature datasets combine observations of Tas over land with sea surface temperature (SST) over ocean. Modeled ocean Tas warms more than SST, which can bias model–observation comparisons. Skin temperature (Ts), which is typically warmer than Tas, follows SST changes so the ocean surface temperature discontinuity δTs = TsTas decreases with warming. Here I show that under CO2 forcing, decreased δTs is consistently simulated for nonpolar ocean within ±60°S/N, but not for other regions. I investigate the causes of oceanic δTs decrease using a LongRunMIP climate simulation, radiative kernels, and standard methods for diagnosing forcing and feedbacks from the CMIP5 ensemble. CO2 forcing establishes longwave heating of the lower atmosphere and subsequent adjustments that result in a small Tas increase, and therefore a δTs decrease. During the subsequent warming in response to CO2 forcing, the model-mean surface evaporation feedback is 3.6 W m−2 °C−1 over oceans, which reduces Ts warming relative to Tas and further shrinks δTs. Present-day forcing and feedback contributions are of similar magnitude, and both contribute to small differences in model–observation comparisons of global warming rates when these differences are not accounted for.

Significance Statement

Earth’s surface skin temperature is generally warmer than that of the air just above, and this discontinuity drives upward turbulent heat fluxes. Under global warming, climate models consistently show that over oceans, the air above warms more than the water below. This causes issues when comparing model output and observational temperature records, since observational records blend land air and ocean water temperature. It also affects understanding of how surface energy and moisture fluxes will change with warming. Observational data are currently too uncertain to confidently support or refute this model behavior, and the IPCC recently noted that “there is no simple explanation based on physical grounds alone for how this difference responds to climate change.” This study provides such an explanation for changes over ocean, and shows that this result applies only to nonpolar oceans.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark Richardson, markr@jpl.nasa.gov

Abstract

Modeled global warming is often quantified using global near-surface air temperature (Tas). Meanwhile, long-term temperature datasets combine observations of Tas over land with sea surface temperature (SST) over ocean. Modeled ocean Tas warms more than SST, which can bias model–observation comparisons. Skin temperature (Ts), which is typically warmer than Tas, follows SST changes so the ocean surface temperature discontinuity δTs = TsTas decreases with warming. Here I show that under CO2 forcing, decreased δTs is consistently simulated for nonpolar ocean within ±60°S/N, but not for other regions. I investigate the causes of oceanic δTs decrease using a LongRunMIP climate simulation, radiative kernels, and standard methods for diagnosing forcing and feedbacks from the CMIP5 ensemble. CO2 forcing establishes longwave heating of the lower atmosphere and subsequent adjustments that result in a small Tas increase, and therefore a δTs decrease. During the subsequent warming in response to CO2 forcing, the model-mean surface evaporation feedback is 3.6 W m−2 °C−1 over oceans, which reduces Ts warming relative to Tas and further shrinks δTs. Present-day forcing and feedback contributions are of similar magnitude, and both contribute to small differences in model–observation comparisons of global warming rates when these differences are not accounted for.

Significance Statement

Earth’s surface skin temperature is generally warmer than that of the air just above, and this discontinuity drives upward turbulent heat fluxes. Under global warming, climate models consistently show that over oceans, the air above warms more than the water below. This causes issues when comparing model output and observational temperature records, since observational records blend land air and ocean water temperature. It also affects understanding of how surface energy and moisture fluxes will change with warming. Observational data are currently too uncertain to confidently support or refute this model behavior, and the IPCC recently noted that “there is no simple explanation based on physical grounds alone for how this difference responds to climate change.” This study provides such an explanation for changes over ocean, and shows that this result applies only to nonpolar oceans.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark Richardson, markr@jpl.nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.18 MB)
Save
  • Adrian, R., and Coauthors, 2009: Lakes as sentinels of climate change. Limnol. Oceanogr., 54, 22832297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and S. C. Sherwood, 2008: Warming maximum in the tropical upper troposphere deduced from thermal winds. Nat. Geosci., 1, 399403, https://doi.org/10.1038/ngeo208.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. J., and Coauthors, 2021: Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nat. Commun., 12, 1688, https://doi.org/10.1038/s41467-021-21971-1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., C. J. Smith, G. Myhre, P. M. Forster, R. Chadwick, and D. Ackerley, 2021: Effective radiative forcing in a GCM with fixed surface temperatures. J. Geophys. Res. Atmos., 126, e2020JD033880, https://doi.org/10.1029/2020JD033880.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, A. Cheng, S. Endo, T. Heus, A. P. Lock, and J. J. van der Dussen, 2016: CGILS phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3 composite forcing change. J. Adv. Model. Earth Syst., 8, 17141726, https://doi.org/10.1002/2016MS000765.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, https://doi.org/10.1002/2013MS000250.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2012: Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett., 7, 034015, https://doi.org/10.1088/1748-9326/7/3/034015.

    • Search Google Scholar
    • Export Citation
  • Clarke, D. C., and M. Richardson, 2021: The benefits of continuous local regression for quantifying global warming. Earth Space Sci., 8, e2020EA001082, https://doi.org/10.1029/2020EA001082.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and Coauthors, 2015: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett., 42, 65266534, https://doi.org/10.1002/2015GL064888.

    • Search Google Scholar
    • Export Citation
  • Dai, N., R. J. Kramer, B. J. Soden, and T. S. L’Ecuyer, 2021: Evaluation of CloudSat radiative kernels using ARM and CERES observations and ERA5 reanalysis. J. Geophys. Res. Atmos., 126, e2020JD034510, https://doi.org/10.1029/2020JD034510.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249253, https://doi.org/10.1038/nature15770.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Search Google Scholar
    • Export Citation
  • Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019: Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: The preeminence of the western Pacific. J. Climate, 32, 54715491, https://doi.org/10.1175/JCLI-D-18-0843.1.

    • Search Google Scholar
    • Export Citation
  • Feldman, D. R., W. D. Collins, R. Pincus, X. Huang, and X. Chen, 2014: Far-infrared surface emissivity and climate. Proc. Natl. Acad. Sci. USA, 111, 16 29716 302, https://doi.org/10.1073/pnas.1413640111.

    • Search Google Scholar
    • Export Citation
  • Feldman, D. R., W. D. Collins, P. J. Gero, M. S. Torn, E. J. Mlawer, and T. R. Shippert, 2015: Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 519, 339343, https://doi.org/10.1038/nature14240.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and L. G. Silvers, 2021: The peculiar trajectory of global warming. J. Geophys. Res. Atmos., 126, e2020JD033629, https://doi.org/10.1029/2020JD033629.

    • Search Google Scholar
    • Export Citation
  • Gleisner, H., M. A. Ringer, and S. B. Healy, 2022: Monitoring global climate change using GNSS radio occultation. npj Climate Atmos. Sci., 5, 6, https://doi.org/10.1038/s41612-022-00229-7.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., P. L. Langen, and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, https://doi.org/10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate response parameter under increasing CO2. Philos. Trans. Roy. Soc., A373, 20140417, https://doi.org/10.1098/rsta.2014.0417.

    • Search Google Scholar
    • Export Citation
  • Grose, M. R., J. Gregory, R. Colman, and T. Andrews, 2018: What climate sensitivity index is most useful for projections? Geophys. Res. Lett., 45, 15591566, https://doi.org/10.1002/2017GL075742.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 287–422.

  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Hausfather, Z., K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson, and R. Rohde, 2017: Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv., 3, e1601207, https://doi.org/10.1126/sciadv.1601207.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and M. A. Morales Maqueda, 2009: Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution. Geophys. Res. Lett., 36, L03603, https://doi.org/10.1029/2008GL036078.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., J. M. Haywood, and M. K. Hawcroft, 2019: Are changes in atmospheric circulation important for black carbon aerosol impacts on clouds, precipitation, and radiation? J. Geophys. Res. Atmos., 124, 79307950, https://doi.org/10.1029/2019JD030568.

    • Search Google Scholar
    • Export Citation
  • Junod, R. A., and J. R. Christy, 2020: A new compilation of globally gridded night‐time marine air temperatures: The UAHNMATv1 dataset. Int. J. Climatol., 40, 26092623, https://doi.org/10.1002/joc.6354.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, T. Ogura, M. Yoshimori, and H. Shiogama, 2015: Rapid adjustments of cloud and hydrological cycle to increasing CO2: A review. Curr. Climate Change Rep., 1, 103113, https://doi.org/10.1007/s40641-015-0007-5.

    • Search Google Scholar
    • Export Citation
  • Kim, S., S. Park, and J. Shin, 2020: Impact of subgrid variation of water vapor on longwave radiation in a general circulation model. J. Adv. Model. Earth Syst., 12, e2019MS001926, https://doi.org/10.1029/2019MS001926.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and M. A. A. Rugenstein, 2015: Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. Roy. Soc., A373, 20150146, https://doi.org/10.1098/rsta.2015.0146.

    • Search Google Scholar
    • Export Citation
  • Kraemer, B. M., and Coauthors, 2015: Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett., 42, 49814988, https://doi.org/10.1002/2015GL064097.

    • Search Google Scholar
    • Export Citation
  • Kramer, R. J., A. V. Matus, B. J. Soden, and T. S. L’Ecuyer, 2019: Observation‐based radiative kernels from CloudSat/CALIPSO. J. Geophys. Res. Atmos., 124, 54315444, https://doi.org/10.1029/2018JD029021.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2021: The polar radiant energy in the far infrared experiment: A new perspective on polar longwave energy exchanges. Bull. Amer. Meteor. Soc., 102, E1431E1449, https://doi.org/10.1175/BAMS-D-20-0155.1.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., N. P. Gillett, and A. H. Monahan, 2020: Climate model projections of 21st century global warming constrained using the observed warming trend. Geophys. Res. Lett., 47, e2019GL086757, https://doi.org/10.1029/2019GL086757.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., E. T. DeWeaver, and D. J. Vimont, 2010: Evaporation change and global warming: The role of net radiation and relative humidity. J. Geophys. Res., 115, D20118, https://doi.org/10.1029/2010JD013949.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, https://doi.org/10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2014: Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency climate change initiative (SST CCI). Geosci. Data J., 1, 179191, https://doi.org/10.1002/gdj3.20.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., Y. T. Eunice Lo, W. J. M. Seviour, L. Haimberger, and L. M. Polvani, 2020: The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability. Environ. Res. Lett, 15, 1040b4, https://doi.org/10.1088/1748-9326/ab9af7.

    • Search Google Scholar
    • Export Citation
  • Mitevski, I., L. M. Polvani, and C. Orbe, 2022: Asymmetric warming/cooling response to CO2 increase/decrease mainly due to non‐logarithmic forcing, not feedbacks. Geophys. Res. Lett., 49, e2021GL097133, https://doi.org/10.1029/2021GL097133.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and Coauthors, 2016: The spectroscopic foundation of radiative forcing of climate by carbon dioxide. Geophys. Res. Lett., 43, 53185325, https://doi.org/10.1002/2016GL068837.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geophiz. Inst., Akad. Nauk. SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., and Coauthors, 2021: An updated assessment of near‐surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361.

    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., A. F. Thompson, J. F. Adkins, and E. D. Galbraith, 2021: A hemispheric asymmetry in poleward ocean heat transport across climates: Implications for overturning and polar warming. Earth Planet. Sci. Lett., 568, 117033, https://doi.org/10.1016/j.epsl.2021.117033.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Bound.-Layer Meteor., 2, 729, https://doi.org/10.1007/BF00718085.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model. NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

  • Palchetti, L., and Coauthors, 2020: FORUM: Unique far-infrared satellite observations to better understand how Earth radiates energy to space. Bull. Amer. Meteor. Soc., 101, E2030E2046, https://doi.org/10.1175/BAMS-D-19-0322.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., 2020: The global‐mean precipitation response to CO2‐induced warming in CMIP6 models. Geophys. Res. Lett., 47, e2020GL089964, https://doi.org/10.1029/2020GL089964.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., A. Conley, and F. M. Vitt, 2018: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10, 317324, https://doi.org/10.5194/essd-10-317-2018.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419, 191198, https://doi.org/10.1038/nature01088.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., 1996: The effect of vertical resolution on clear-sky radiation calculations: Tests with two schemes. Tellus, 48A, 403423, https://doi.org/10.3402/tellusa.v48i3.12068.

    • Search Google Scholar
    • Export Citation
  • Richardson, M., K. Cowtan, E. Hawkins, and M. B. Stolpe, 2016: Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Climate Change, 6, 931935, https://doi.org/10.1038/nclimate3066.

    • Search Google Scholar
    • Export Citation
  • Richardson, M., K. Cowtan, and R. J. Millar, 2018: Global temperature definition affects achievement of long-term climate goals. Environ. Res. Lett., 13, 054004, https://doi.org/10.1088/1748-9326/aab305.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118, https://doi.org/10.1029/2008JD010561.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, S. K. Behera, T. Doi, and Y. Masumoto, 2014: Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dyn., 42, 171188, https://doi.org/10.1007/s00382-012-1624-5.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 14101411, https://doi.org/10.1126/science.1075390-a.

    • Search Google Scholar
    • Export Citation
  • Rohde, R. A., and Z. Hausfather, 2020: The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data, 12, 34693479, https://doi.org/10.5194/essd-12-3469-2020.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Rubino, A., D. Zanchettin, F. De Rovere, and M. J. McPhaden, 2020: On the interchangeability of sea-surface and near-surface air temperature anomalies in climatologies. Sci. Rep., 10, 7433, https://doi.org/10.1038/s41598-020-64167-1.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2019: LongRunMIP: Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc., 100, 25512570, https://doi.org/10.1175/BAMS-D-19-0068.1.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2020: Equilibrium climate sensitivity estimated by equilibrating climate models. Geophys. Res. Lett., 47, e2019GL083898, https://doi.org/10.1029/2019GL083898.

    • Search Google Scholar
    • Export Citation
  • Samset, B. H., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43, 27822791, https://doi.org/10.1002/2016GL068064.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2017: Causes of differences in model and satellite tropospheric warming rates. Nat. Geosci., 10, 478485, https://doi.org/10.1038/ngeo2973.

    • Search Google Scholar
    • Export Citation
  • Schwarzwald, K., A. Poppick, M. Rugenstein, J. Bloch-Johnson, J. Wang, D. McInerney, and E. J. Moyer, 2021: Changes in future precipitation mean and variability across scales. J. Climate, 34, 27412758, https://doi.org/10.1175/JCLI-D-20-0001.1.

    • Search Google Scholar
    • Export Citation
  • Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G. Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79, 20192031, https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and Coauthors, 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

    • Search Google Scholar
    • Export Citation
  • Siler, N., G. H. Roe, K. C. Armour, and N. Feldl, 2019: Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Climate Dyn., 52, 39833995, https://doi.org/10.1007/s00382-018-4359-0.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Smith, C. J., 2018: HadGEM2 radiative kernels. University of Leeds, accessed 24 February 2022, https://doi.org/10.5518/406.

  • Smith, C. J., and Coauthors, 2018: Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45, 12 02312 031, https://doi.org/10.1029/2018GL079826.

    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and Coauthors, 2020: Effective radiative forcing and adjustments in CMIP6 models. Atmos. Chem. Phys., 20, 95919618, https://doi.org/10.5194/acp-20-9591-2020.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., J. R. Christy, and W. D. Braswell, 2017: UAH version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci., 53, 121130, https://doi.org/10.1007/s13143-017-0010-y.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., B. H. Kahn, and M. Richardson, 2016: The super greenhouse effect in a changing climate. J. Climate, 29, 54695482, https://doi.org/10.1175/JCLI-D-15-0234.1.

    • Search Google Scholar
    • Export Citation
  • Stetler, J. T., S. Girdner, J. Mack, L. A. Winslow, T. H. Leach, and K. C. Rose, 2021: Atmospheric stilling and warming air temperatures drive long‐term changes in lake stratification in a large oligotrophic lake. Limnol. Oceanogr., 66, 954964, https://doi.org/10.1002/lno.11654.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2009: Radiative constraints on the hydrological cycle in an idealized radiative–convective equilibrium model. J. Atmos. Sci., 66, 7791, https://doi.org/10.1175/2008JAS2797.1.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., and Coauthors, 2003: The ISSWG line-by-line inter-comparison experiment. J. Quant. Spectrosc. Radiat. Transfer, 77, 433453, https://doi.org/10.1016/S0022-4073(02)00174-7.

    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2021: Implementing full spatial coverage in NOAA’s global temperature analysis. Geophys. Res. Lett., 48, e2020GL090873, https://doi.org/10.1029/2020GL090873.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Wang, W., X. Lee, W. Xiao, S. Liu, N. Schultz, Y. Wang, M. Zhang, and L. Zhao, 2018: Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci., 11, 410414, https://doi.org/10.1038/s41561-018-0114-8.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Coauthors, 2022: Assessment of surface downward longwave radiation in CMIP6 with comparison to observations and CMIP5. Atmos. Res., 270, 106056, https://doi.org/10.1016/j.atmosres.2022.106056.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., Z. Li, A. Cheng, and Y. Hu, 2020: Changes in clouds and atmospheric circulation associated with rapid adjustment induced by increased atmospheric CO2: A multiscale modeling framework study. Climate Dyn., 55, 277293, https://doi.org/10.1007/s00382-018-4401-2.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., S.-Y. Song, R. P. Allan, S.-I. An, and J. Shin, 2021: Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway. npj Climate Atmos. Sci., 4, 53, https://doi.org/10.1038/s41612-021-00206-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., X. Wang, and C. Wang, 2018: On the simulations of global oceanic latent heat flux in the CMIP5 multimodel ensemble. J. Climate, 31, 71117128, https://doi.org/10.1175/JCLI-D-17-0713.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, and S. Zhang, 2013: Trends in planetary boundary layer height over Europe. J. Climate, 26, 10 07110 076, https://doi.org/10.1175/JCLI-D-13-00108.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci., 9, 871874, https://doi.org/10.1038/ngeo2828.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 852 852 58
Full Text Views 248 248 3
PDF Downloads 291 291 4