Interannual Sea Level Variability along the U.S. East Coast during the Satellite Altimetry Era: Local versus Remote Forcing

Yingli Zhu aDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Yingli Zhu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7216-8174
,
Weiqing Han aDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Michael A. Alexander bPhysical Science Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael A. Alexander in
Current site
Google Scholar
PubMed
Close
, and
Sang-Ik Shin bPhysical Science Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
cCIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Sang-Ik Shin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The contributions of local and remote forcings to the interannual sea level anomalies (SLAs) along the U.S. East Coast (USEC) during the satellite altimetry era from 1993 to 2019 are quantified with analytical models assisted by statistical methods. The local forcings from alongshore wind stress, sea level pressure via inverted barometer (IB) effect, and river discharges together explain 47%, 60.4%, and 66.8% of coastal sea level variance in the South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), and Gulf of Maine (GOM), respectively, with river discharges having the minimum contribution. Over a longer period of 1960–2019, the contribution of local forcings reduces significantly, with the IB effect having the minimum contribution. The remote forcings associated with open-ocean signals from the east and from the northern boundary at the Scotian coast together with the Gulf Stream (GS) variability explain 45.7%, 28.5%, and 37.7% of coastal sea level variance in the SAB, MAB, and GOM, respectively, playing a role comparable to that of local forcings in the SAB. The open-ocean sea level signals from 35° to 38°N strongly influence coastal SLAs in the SAB. The coastal SLAs in the SAB are also affected by the upstream GS strength (28°–36°N) and basin-scale wind stress curl anomaly, which is linked to the meridional shift in the downstream GS (74°–68°W). Remote forcings from the subpolar North Atlantic and wind stress curl from the Grand Banks to the Scotian coast influence coastal SLAs in the GOM and MAB via the northern boundary of the USEC at the Scotian coast.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingli Zhu, yingli.zhu@colorado.edu

Abstract

The contributions of local and remote forcings to the interannual sea level anomalies (SLAs) along the U.S. East Coast (USEC) during the satellite altimetry era from 1993 to 2019 are quantified with analytical models assisted by statistical methods. The local forcings from alongshore wind stress, sea level pressure via inverted barometer (IB) effect, and river discharges together explain 47%, 60.4%, and 66.8% of coastal sea level variance in the South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), and Gulf of Maine (GOM), respectively, with river discharges having the minimum contribution. Over a longer period of 1960–2019, the contribution of local forcings reduces significantly, with the IB effect having the minimum contribution. The remote forcings associated with open-ocean signals from the east and from the northern boundary at the Scotian coast together with the Gulf Stream (GS) variability explain 45.7%, 28.5%, and 37.7% of coastal sea level variance in the SAB, MAB, and GOM, respectively, playing a role comparable to that of local forcings in the SAB. The open-ocean sea level signals from 35° to 38°N strongly influence coastal SLAs in the SAB. The coastal SLAs in the SAB are also affected by the upstream GS strength (28°–36°N) and basin-scale wind stress curl anomaly, which is linked to the meridional shift in the downstream GS (74°–68°W). Remote forcings from the subpolar North Atlantic and wind stress curl from the Grand Banks to the Scotian coast influence coastal SLAs in the GOM and MAB via the northern boundary of the USEC at the Scotian coast.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingli Zhu, yingli.zhu@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.0784 MB)
Save
  • Andres, M., G. G. Gawarkiewicz, and J. M. Toole, 2013: Interannual sea level variability in the western North Atlantic: Regional forcing and remote response. Geophys. Res. Lett., 40, 59155919, https://doi.org/10.1002/2013GL058013.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2009: Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603, https://doi.org/10.1029/2008GL036215.

    • Search Google Scholar
    • Export Citation
  • Blaha, J. P., 1984: Fluctuations of monthly sea level as related to the intensity of the Gulf Stream from Key West to Norfolk. J. Geophys. Res., 89, 80338042, https://doi.org/10.1029/JC089iC05p08033.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and Coauthors, 2022: Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations. Commun. Earth Environ., 3, 117, https://doi.org/10.1038/s43247-022-00448-z.

    • Search Google Scholar
    • Export Citation
  • Chen, N., G. Han, and X.-H. Yan, 2020: Similarity and difference in interannual sea level variations between the Mid-Atlantic Bight and the Nova Scotia coast. J. Geophys. Res. Oceans, 125, e2019JC015919, https://doi.org/10.1029/2019JC015919.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Church, J., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137–1216.

  • Dangendorf, S., F. M. Calafat, A. Arns, T. Wahl, I. D. Haigh, and J. Jensen, 2014: Mean sea level variability in the North Sea: Processes and implications. J. Geophys. Res. Oceans, 119, 68206841, https://doi.org/10.1002/2014JC009901.

    • Search Google Scholar
    • Export Citation
  • Dangendorf, S., T. Frederikse, L. Chafik, J. M. Klinck, T. Ezer, and B. D. Hamlington, 2021: Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level. Nat. Climate Change, 11, 514520, https://doi.org/10.1038/s41558-021-01046-1.

    • Search Google Scholar
    • Export Citation
  • Diabaté, S. T., D. Swingedouw, J. J.-M. Hirschi, A. Duchez, P. J. Leadbitter, I. D. Haigh, and G. D. McCarthy, 2021: Western boundary circulation and coastal sea-level variability in Northern Hemisphere oceans. Ocean Sci., 17, 14491471, https://doi.org/10.5194/os-17-1449-2021.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., G. Goni, M. Baringer, and D. Volkov, 2018: What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophys. Res. Lett., 45, 13 36713 376, https://doi.org/10.1029/2018GL081183.

    • Search Google Scholar
    • Export Citation
  • Dong, S., M. O. Baringer, and G. J. Goni, 2019: Slow down of the Gulf Stream during 1993–2016. Sci. Rep., 9, 6672, https://doi.org/10.1038/s41598-019-42820-8.

    • Search Google Scholar
    • Export Citation
  • Durand, F., and Coauthors, 2019: Impact of continental freshwater runoff on coastal sea level. Surv. Geophys., 40, 14371466, https://doi.org/10.1007/s10712-019-09536-w.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2013: Sea level rise, spatially uneven and temporally unsteady: Why the U.S. East Coast, the global tide gauge record, and the global altimeter data show different trends. Geophys. Res. Lett., 40, 54395444, https://doi.org/10.1002/2013GL057952.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2015: Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012. Global Planet. Change, 129, 2336, https://doi.org/10.1016/j.gloplacha.2015.03.002.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2019: Regional differences in sea level rise between the Mid‐Atlantic Bight and the South Atlantic Bight: Is the Gulf Stream to blame? Earth’s Future, 7, 771783, https://doi.org/10.1029/2019EF001174.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. P. Atkinson, W. B. Corlett, and J. L. Blanco, 2013: Gulf Stream’s induced sea level rise and variability along the U.S. Mid-Atlantic coast. J. Geophys. Res. Oceans, 118, 685697, https://doi.org/10.1002/jgrc.20091.

    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects, C. B. Field et al., Eds., Cambridge University Press, 1–32.

  • Frederikse, T., K. Simon, C. A. Katsman, and R. Riva, 2017: The sea-level budget along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics. J. Geophys. Res. Oceans, 122, 54865501, https://doi.org/10.1002/2017JC012699.

    • Search Google Scholar
    • Export Citation
  • Frederikse, T., T. Lee, O. Wang, B. Kirtman, E. Becker, B. Hamlington, D. Limonadi, and D. Waliser, 2022: A hybrid dynamical approach for seasonal prediction of sea-level anomalies: A pilot study for Charleston, South Carolina. J. Geophys. Res. Oceans, 127, e2021JC018137, https://doi.org/10.1029/2021JC018137.

    • Search Google Scholar
    • Export Citation
  • Goddard, P., J. Yin, S. M. Griffies, and S. Zhang, 2015: An extreme event of sea-level rise along the northeast coast of North America in 2009–2010. Nat. Commun., 6, 6346, https://doi.org/10.1038/ncomms7346.

    • Search Google Scholar
    • Export Citation
  • Gonçalves Neto, A., J. A. Langan, and J. B. Palter, 2021: Changes in the Gulf Stream preceded rapid warming of the northwest Atlantic Shelf. Commun. Earth Environ., 2, 74, https://doi.org/10.1038/s43247-021-00143-5.

    • Search Google Scholar
    • Export Citation
  • Gornitz, V., S. Couch, and E. K. Hartig, 2001: Impacts of sea level rise in the New York City metropolitan area. Global Planet. Change, 32, 6188, https://doi.org/10.1016/S0921-8181(01)00150-3.

    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, D. Stammer, A. Hu, B. Hamlington, J. Kenigson, H. Palanisamy, and P. Thompson, 2017: Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys., 38, 217250, https://doi.org/10.1007/s10712-016-9386-y.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2019: Impacts of basin-scale climate modes on coastal sea level: A review. Surv. Geophys., 40, 14931541, https://doi.org/10.1007/s10712-019-09562-8.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 2021, https://doi.org/10.24381/cds.f17050d7.

  • Holgate, S. J., and Coauthors, 2013: New data systems and products at the Permanent Service for Mean Sea Level. J. Coastal Res., 29, 493504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1.

    • Search Google Scholar
    • Export Citation
  • Hong, B. G., W. Sturges, and A. J. Clarke, 2000: Sea level on the U.S. East Coast: Decadal variability caused by open ocean wind-curl forcing. J. Phys. Oceanogr., 30, 20882098, https://doi.org/10.1175/1520-0485(2000)030<2088:SLOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, A., and S. C. Bates, 2018: Internal climate variability and projected future regional steric and dynamic sea level rise. Nat. Commun., 9, 1068, https://doi.org/10.1038/s41467-018-03474-8.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, and J. Yin, 2011: Effect of the potential melting of the Greenland Ice Sheet on the meridional overturning circulation and global climate in the future. Deep-Sea Res. II, 58, 19141926, https://doi.org/10.1016/j.dsr2.2010.10.069.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., I. Fukumori, S. M. Griffies, J. M. Huthnance, S. Minobe, P. Spence, K. R. Thompson, and A. Wise, 2019: Sea level and the role of coastal trapped waves in mediating the influence of the open ocean on the coast. Surv. Geophys., 40, 14671492, https://doi.org/10.1007/s10712-019-09535-x.

    • Search Google Scholar
    • Export Citation
  • Kenigson, J. S., W. Han, B. Rajagopalan, and M. Jasinski, 2018: Decadal shift of NAO-linked interannual sea level variability along the U.S. northeast coast. J. Climate, 31, 49814989, https://doi.org/10.1175/JCLI-D-17-0403.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, https://doi.org/10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., 2013: Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophys. Res. Lett., 40, 39813985, https://doi.org/10.1002/grl.50781.

    • Search Google Scholar
    • Export Citation
  • Li, J., and A. J. Clarke, 2005: Interannual flow along the northern coast of the Gulf of Mexico. J. Geophys. Res., 110, C11002, https://doi.org/10.1029/2004JC002606.

    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Ji, P. S. Fratantoni, C. Chen, J. A. Hare, C. S. Davis, and R. C. Beardsley, 2014: Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the northwest Atlantic shelf. J. Geophys. Res. Oceans, 119, 24622479, https://doi.org/10.1002/2013JC009385.

    • Search Google Scholar
    • Export Citation
  • Little, C. M., C. G. Piecuch, and R. M. Ponte, 2017: On the relationship between the meridional overturning circulation, alongshore wind stress, and United States East Coast sea level in the Community Earth System Model large ensemble. J. Geophys. Res. Oceans, 122, 45544568, https://doi.org/10.1002/2017JC012713.

    • Search Google Scholar
    • Export Citation
  • Little, C. M., A. Hu, C. W. Hughes, G. D. McCarthy, C. G. Piecuch, R. M. Ponte, and M. D. Thomas, 2019: The relationship between U.S. East Coast sea level and the Atlantic meridional overturning circulation: A review. J. Geophys. Res. Oceans, 124, 64356458, https://doi.org/10.1029/2019JC015152.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., I. D. Haigh, J. J.-M. Hirschi, J. P. Grist, D. A. Smeed, 2015: Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521, 508510, https://doi.org/10.1038/nature14491.

    • Search Google Scholar
    • Export Citation
  • Meade, R. H., and K. O. Emery, 1971: Sea level as affected by river runoff, eastern United States. Science, 173, 425428, https://doi.org/10.1126/science.173.3995.425.

    • Search Google Scholar
    • Export Citation
  • Miller, L., and B. C. Douglas, 2007: Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys. Res. Lett., 34, L16602, https://doi.org/10.1029/2007GL030862.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Terada, B. Qiu, and N. Schneider, 2017: Western boundary sea level: A theory, rule of thumb, and application to climate models. J. Phys. Oceanogr., 47, 957977, https://doi.org/10.1175/JPO-D-16-0144.1.

    • Search Google Scholar
    • Export Citation
  • Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571.

    • Search Google Scholar
    • Export Citation
  • Oppenheimer, M., and Coauthors, 2019: Sea level rise and implications for low-lying islands, coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 321–445, https://doi.org/10.1017/9781009157964.006.

  • Piecuch, C. G., and R. M. Ponte, 2015: Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys. Res. Lett., 42, 59185925, https://doi.org/10.1002/2015GL064580.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., S. Dangendorf, R. M. Ponte, and M. Marcos, 2016: Annual sea level changes on the North American northeast Coast: Influence of local winds and barotropic motions. J. Climate, 29, 48014816, https://doi.org/10.1175/JCLI-D-16-0048.1.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., K. Bittermann, A. C. Kemp, R. M. Ponte, C. M. Little, S. E. Engelhart, and S. J. Lentz, 2018: River-discharge effects on United States Atlantic and Gulf Coast sea-level changes. Proc. Natl. Acad. Sci. USA, 115, 77297734, https://doi.org/10.1073/pnas.1805428115.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., F. M. Calafat, S. Dangendorf, and G. Jordà, 2019: The ability of barotropic models to simulate historical mean sea level changes from coastal tide gauge data. Surv. Geophys., 40, 13991435, https://doi.org/10.1007/s10712-019-09537-9.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 1992: The sea level response of a stratified ocean to barometric pressure forcing. J. Phys. Oceanogr., 22, 109113, https://doi.org/10.1175/1520-0485(1992)022<0109:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Low-frequency sea level variability and the inverted barometer effect. J. Atmos. Oceanic Technol., 23, 619629, https://doi.org/10.1175/JTECH1864.1.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and Coauthors, 2019: Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Front. Mar. Sci., 6, 437, https://doi.org/10.3389/fmars.2019.00437.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, https://doi.org/10.1175/2010JPO4462.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., W. Miao, and P. Müller, 1997: Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27, 24052417, https://doi.org/10.1175/1520-0485(1997)027<2405:PADOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. N. Flagg, K. Donohue, A. Sanchez-Franks, and J. Lillibridge, 2014: On the long-term stability of Gulf Stream transport based on 20 years of direct measurements. Geophys. Res. Lett., 41, 114120, https://doi.org/10.1002/2013GL058636.

    • Search Google Scholar
    • Export Citation
  • Sallenger, A. H., Jr., K. S. Doran, and P. A. Howd, 2012: Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Climate Change, 2, 884888, https://doi.org/10.1038/nclimate1597.

    • Search Google Scholar
    • Export Citation
  • Sandstrom, H., 1980: On the wind-induced sea level changes on the Scotian Shelf. J. Geophys. Res., 85, 461468, https://doi.org/10.1029/JC085iC01p00461.

    • Search Google Scholar
    • Export Citation
  • Sweet, W., G. Dusek, D. Marcy, G. Carbin, and J. Marra, 2019: 2018 state of U.S. high tide flooding with a 2019 outlook. NOAA Tech. Rep. NOS CO-OPS 090, 31 pp., https://tidesandcurrents.noaa.gov/publications/Techrpt_090_2018_State_of_US_HighTideFlooding_with_a_2019_Outlook_Final.pdf.

  • Sweet, W., S. Simon, G. Dusek, D. Marcy, W. Brooks, M. Pendleton, and J. Marra, 2021: 2021 state of high tide flooding and annual outlook. NOAA High Tide Flooding Rep., 28 pp., https://tidesandcurrents.noaa.gov/publications/2021_State_of_High_Tide_Flooding_and_Annual_Outlook_Final.pdf.

  • Taburet, G., A. Sanchez-Roman, M. Ballarotta, M.-I. Pujol, J.-F. Legeais, F. Fournier, Y. Faugere, and G. Dibarboure, 2019: DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci., 15, 12071224, https://doi.org/10.5194/os-15-1207-2019.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2003: Comments on “The effect of bottom topography on the speed of long extratropical planetary waves.” J. Phys. Oceanogr., 33, 15361541, https://doi.org/10.1175/1520-0485(2003)033<1536:COTEOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, https://doi.org/10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., and G. T. Mitchum, 2014: Coherent sea level variability on the North Atlantic western boundary. J. Geophys. Res. Oceans, 119, 56765689, https://doi.org/10.1002/2014JC009999.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., A. Dutton, and J. B. Martin, 2017: Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophys. Res. Lett., 44, 78767882, https://doi.org/10.1002/2017GL073926.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, R. Domingues, H. Zhang, and M. Goes, 2019: Interannual sea level variability along the southeastern seaboard of the United States in relation to the gyre‐scale heat divergence in the North Atlantic. Geophys. Res. Lett., 46, 74817490, https://doi.org/10.1029/2019GL083596.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., R. Domingues, C. S. Meinen, R. Garcia, M. Baringer, G. Goni, and R. H. Smith, 2020: Inferring Florida Current volume transport from satellite altimetry. J. Geophys. Res. Oceans, 125, e2020JC016763, https://doi.org/10.1029/2020JC016763.

    • Search Google Scholar
    • Export Citation
  • Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther, 2015: Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Climate Change, 5, 10931097, https://doi.org/10.1038/nclimate2736.

    • Search Google Scholar
    • Export Citation
  • Wang, O., and Coauthors, 2022: Local and remote forcing of interannual sea-level variability at Nantucket Island. J. Geophys. Res. Oceans, 127, e2021JC018275, https://doi.org/10.1029/2021JC018275.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., I. Yashayaev, and B. Greenan, 2015: Seasonality of the inshore Labrador current over the Newfoundland shelf. Cont. Shelf Res., 100, 110, https://doi.org/10.1016/j.csr.2015.03.010.

    • Search Google Scholar
    • Export Citation
  • Wdowinski, S., R. Braya, B. P. Kirtmana, and Z. Wub, 2016: Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coastal Manage., 126, 18, https://doi.org/10.1016/j.ocecoaman.2016.03.002.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 5061, https://doi.org/10.1175/1520-0485(1977)007<0050:AFOBLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wise, A., C. W. Hughes, and J. A. Polton, 2018: Bathymetric influence on the coastal sea level response to ocean gyres at western boundaries. J. Phys. Oceanogr., 48, 29492964, https://doi.org/10.1175/JPO-D-18-0007.1.

    • Search Google Scholar
    • Export Citation
  • Wise, A., C. W. Hughes, J. A. Polton, and J. M. Huthnance, 2020a: Leaky slope waves and sea level: Unusual consequences of the beta effect along western boundaries with bottom topography and dissipation. J. Phys. Oceanogr., 50, 217237, https://doi.org/10.1175/JPO-D-19-0084.1.

    • Search Google Scholar
    • Export Citation
  • Wise, A., J. A. Polton, C. W. Hughes, and J. M. Huthnance, 2020b: Idealised modelling of offshore-forced sea level hot spots and boundary waves along the North American East Coast. Ocean Modell., 155, 101706, https://doi.org/10.1016/j.ocemod.2020.101706.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., M. A. M. Maqueda, V. M. Roussenov, R. G. Williams, and C. W. Hughes, 2014: Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J. Geophys. Res. Oceans, 119, 89168935, https://doi.org/10.1002/2014JC010520.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., and Coauthors, 2019: Forcing factors affecting sea level changes at the coast. Surv. Geophys., 40, 13511397, https://doi.org/10.1007/s10712-019-09531-1.

    • Search Google Scholar
    • Export Citation
  • Wu, H., 2021: Beta-plane arrested topographic wave as a linkage of open ocean forcing and mean shelf circulation. J. Phys. Oceanogr., 51, 879893, https://doi.org/10.1175/JPO-D-20-0195.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1997: Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys., 35, 79107, https://doi.org/10.1029/96RG03037.

    • Search Google Scholar
    • Export Citation
  • Xu, F.-H., and L.-Y. Oey, 2011: The origin of along-shelf pressure gradient in the middle Atlantic Bight. J. Phys. Oceanogr., 41, 17201740, https://doi.org/10.1175/2011JPO4589.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J., and P. B. Goddard, 2013: Oceanic control of sea level rise patterns along the east coast of the United States. Geophys. Res. Lett., 40, 55145520, https://doi.org/10.1002/2013GL057992.

    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci., 2, 262266, https://doi.org/10.1038/ngeo462.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2014: A simple model of the response of the Atlantic to the North Atlantic Oscillation. J. Climate, 27, 40524069, https://doi.org/10.1175/JCLI-D-13-00330.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., W. Han, and M. A. Alexander, 2023: Nonstationary roles of regional forcings in driving low-frequency sea level variability along the U.S. east coast since the 1950s. Geophys. Res. Lett., 50, e2023GL104191, https://doi.org/10.1029/2023GL104191.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 477 476 65
Full Text Views 186 186 13
PDF Downloads 237 237 17