Impact of Atmospheric Circulation Variability on U.S. Midwest Moisture Sources

Theo Carr aMassachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts
bDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Theo Carr in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9979-7766
and
Caroline C. Ummenhofer bDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Caroline C. Ummenhofer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9163-3967
Restricted access

Abstract

Elevated spring and summer rainfall in the U.S. Midwest is often associated with a strong Great Plains low-level jet (GPLLJ), which transports moist air northward to the region from the Gulf of Mexico. While the intensity of hourly precipitation extremes depends on local moisture availability and vertical velocity, sustained moisture convergence on longer time scales depends on horizontal moisture advection from remote sources. Therefore, the magnitude of moisture convergence in the Midwest depends in part on the humidity in these moisture source regions. Past work has identified the time-mean spatial distribution of moisture sources for the Midwest and studied how this pattern changes in years with anomalous rainfall. Here, using reanalysis products and an Eulerian moisture tracking model, we seek to increase physical understanding of this moisture source variability by linking it to the GPLLJ, which has been studied extensively. We find that on interannual time scales, an anomalously strong GPLLJ is associated with a shift in the distribution of moisture sources from land to ocean, with most of the anomalous moisture transported to—and converged in—the Midwest originating from the Atlantic Ocean. This effect is more pronounced on synoptic time scales, when almost all anomalous moisture transported to the region originates over the ocean. We also show that the observed positive trend in oceanic moisture contribution to the Midwest from 1979 to 2020 is consistent with a strengthening of the GPLLJ over the same period. We conclude by outlining how projected changes in a region’s upstream moisture sources may be useful for understanding changes in local precipitation variability.

Significance Statement

In this work, we study how the origin of moisture that forms precipitation in the U.S. Midwest covaries with large-scale atmospheric circulation. Our results show that an intensification of the mean winds tends to increase the proportion of total rainfall that originates from the ocean. This analysis may help to constrain future projections of rainfall extremes in the central United States, as projected changes in humidity over the ocean are typically more robust and better understood than those over land.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theo Carr, ktcarr@mit.edu

Abstract

Elevated spring and summer rainfall in the U.S. Midwest is often associated with a strong Great Plains low-level jet (GPLLJ), which transports moist air northward to the region from the Gulf of Mexico. While the intensity of hourly precipitation extremes depends on local moisture availability and vertical velocity, sustained moisture convergence on longer time scales depends on horizontal moisture advection from remote sources. Therefore, the magnitude of moisture convergence in the Midwest depends in part on the humidity in these moisture source regions. Past work has identified the time-mean spatial distribution of moisture sources for the Midwest and studied how this pattern changes in years with anomalous rainfall. Here, using reanalysis products and an Eulerian moisture tracking model, we seek to increase physical understanding of this moisture source variability by linking it to the GPLLJ, which has been studied extensively. We find that on interannual time scales, an anomalously strong GPLLJ is associated with a shift in the distribution of moisture sources from land to ocean, with most of the anomalous moisture transported to—and converged in—the Midwest originating from the Atlantic Ocean. This effect is more pronounced on synoptic time scales, when almost all anomalous moisture transported to the region originates over the ocean. We also show that the observed positive trend in oceanic moisture contribution to the Midwest from 1979 to 2020 is consistent with a strengthening of the GPLLJ over the same period. We conclude by outlining how projected changes in a region’s upstream moisture sources may be useful for understanding changes in local precipitation variability.

Significance Statement

In this work, we study how the origin of moisture that forms precipitation in the U.S. Midwest covaries with large-scale atmospheric circulation. Our results show that an intensification of the mean winds tends to increase the proportion of total rainfall that originates from the ocean. This analysis may help to constrain future projections of rainfall extremes in the central United States, as projected changes in humidity over the ocean are typically more robust and better understood than those over land.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theo Carr, ktcarr@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 13.078 MB)
Save
  • Abel, B. D., B. Rajagopalan, and A. J. Ray, 2022: Understanding the dominant moisture sources and pathways of summer precipitation in the southeast Prairie pothole region. Earth Space Sci., 9, e2021EA001855, https://doi.org/10.1029/2021EA001855.

    • Search Google Scholar
    • Export Citation
  • Agrawal, S., C. R. Ferguson, L. Bosart, and D. A. Burrows, 2021: Teleconnections governing the interannual variability of Great Plains low-level jets in May. J. Climate, 34, 47854802, https://doi.org/10.1175/JCLI-D-20-0451.1.

    • Search Google Scholar
    • Export Citation
  • Algarra, I., J. Eiras-Barca, G. Miguez-Macho, R. Nieto, and L. Gimeno, 2019: On the assessment of the moisture transport by the Great Plains low-level jet. Earth Syst. Dyn., 10, 107119, https://doi.org/10.5194/esd-10-107-2019.

    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., S.-Y. Wang, and K. Hilburn, 2013: Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys. Res. Lett., 40, 62476251, https://doi.org/10.1002/2013GL058296.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and J. E. Janowiak, 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681695, https://doi.org/10.1175/1520-0477(1995)076<0681:ACAWTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedict, I., C. C. van Heerwaarden, R. J. van der Ent, A. H. Weerts, and W. Hazeleger, 2020: Decline in terrestrial moisture sources of the Mississippi River basin in a future climate. J. Hydrometeor., 21, 299316, https://doi.org/10.1175/JHM-D-19-0094.1.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., P. A. Dirmeyer, A. Sudradjat, B. S. Levy, and F. Bernal, 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2, 537557, https://doi.org/10.1175/1525-7541(2001)002<0537:AYCDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., R. R. McCrary, A. Seth, and L. O. Mearns, 2017: A mechanistically credible, poleward shift in warm-season precipitation projected for the U.S. Southern Great Plains? J. Climate, 30, 82758298, https://doi.org/10.1175/JCLI-D-16-0316.1.

    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, M. A. Campbell, G. Xia, and L. F. Bosart, 2019: An objective classification and analysis of upper-level coupling to the Great Plains low-level jet over the twentieth century. J. Climate, 32, 71277152, https://doi.org/10.1175/JCLI-D-18-0891.1.

    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, and L. F. Bosart, 2020: The role of upper-level coupling on Great Plains low-level jet structure and variability. J. Atmos. Sci., 77, 43174335, https://doi.org/10.1175/JAS-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, and K. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, https://doi.org/10.1175/JCLI-D-16-0241.1.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., E. K. Vizy, Z. S. Launer, and C. M. Patricola, 2008: Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Climate, 21, 63216340, https://doi.org/10.1175/2008JCLI2355.1.

    • Search Google Scholar
    • Export Citation
  • Danco, J. F., and E. R. Martin, 2018: Understanding the influence of ENSO on the Great Plains low-level jet in CMIP5 models. Climate Dyn., 51, 15371558, https://doi.org/10.1007/s00382-017-3970-9.

    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, https://doi.org/10.1175/2007JAMC1356.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter III, 2009: The “Maya Express”: Floods in the U.S. Midwest. Eos, Trans. Amer. Geophys. Union, 90, 101102, https://doi.org/10.1029/2009EO120001.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter III, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, https://doi.org/10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., F. Lei, and W. T. Crow, 2022: Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun., 13, 336, https://doi.org/10.1038/s41467-021-27938-6.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. W. Keys, R. J. van der Ent, B. R. Lintner, A. Berg, and J. P. Krasting, 2019: Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation. J. Climate, 32, 77137726, https://doi.org/10.1175/JCLI-D-19-0145.1.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, and R. Sorí, 2020: The growing importance of oceanic moisture sources for continental precipitation. npj Climate Atmos. Sci., 3, 27, https://doi.org/10.1038/s41612-020-00133-y.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., H. Wakatsuki, and G. C. Nelson, 2022: Evidence for and projection of multi-breadbasket failure caused by climate change. Curr. Opin. Environ. Sustainability, 58, 101217, https://doi.org/10.1016/j.cosust.2022.101217.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, https://doi.org/10.1016/j.jmarsys.2009.11.002.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., G. A. Vecchi, R. Msadek, A. Wittenberg, T. L. Delworth, and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, https://doi.org/10.1175/JCLI-D-14-00590.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., A. Simmons, F. Vamborg, and M. J. Rodwell, 2022: An evaluation of ERA5 precipitation for climate monitoring. Quart. J. Roy. Meteor. Soc., 148, 31523165, https://doi.org/10.1002/qj.4351.

    • Search Google Scholar
    • Export Citation
  • Li, L., and W. Li, 2015: Thermodynamic and dynamic contributions to future changes in regional precipitation variance: Focus on the southeastern United States. Climate Dyn., 45, 6782, https://doi.org/10.1007/s00382-014-2216-3.

    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016: Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, https://doi.org/10.1175/JCLI-D-15-0520.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, and C. C. Ummenhofer, 2018: The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events. Climate Dyn., 50, 12911305, https://doi.org/10.1007/s00382-017-3685-y.

    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, and C. C. Ummenhofer, 2022: Skillful long-lead prediction of summertime heavy rainfall in the US Midwest from sea surface salinity. Geophys. Res. Lett., 49, e2022GL098554, https://doi.org/10.1029/2022GL098554.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, https://doi.org/10.1175/2010JCLI3829.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Wea. Rev., 139, 20982116, https://doi.org/10.1175/2010MWR3565.1.

    • Search Google Scholar
    • Export Citation
  • Malloy, K., and B. P. Kirtman, 2022: The summer Asia–North America teleconnection and its modulation by ENSO in Community Atmosphere Model, version 5 (CAM5). Climate Dyn., 5, 22132230, https://doi.org/10.1007/s00382-022-06205-4.

    • Search Google Scholar
    • Export Citation
  • Malloy, K., and B. P. Kirtman, 2020: Predictability of midsummer Great Plains low-level jet and associated precipitation. Wea. Forecasting, 35, 215235, https://doi.org/10.1175/WAF-D-19-0103.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, https://doi.org/10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., G. Chen, and D. A. Burrows, 2017: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather extremes. J. Climate, 30, 56755697, https://doi.org/10.1175/JCLI-D-16-0692.1.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. N. Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and E. P. Gerber, 2016: The rain is askew: Two idealized models relating vertical velocity and precipitation distributions in a warming world. J. Climate, 29, 64456462, https://doi.org/10.1175/JCLI-D-16-0097.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., R. Knutti, F. Lehner, C. Deser, and B. M. Sanderson, 2017: Precipitation variability increases in a warmer climate. Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. M. Hartten, 2014: Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic Oscillation. Geophys. Res. Lett., 41, 21262132, https://doi.org/10.1002/2014GL059252.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, https://doi.org/10.1175/JAS-D-13-0243.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, C., and Coauthors, 2020: Understanding and managing connected extreme events. Nat. Climate Change, 10, 611621, https://doi.org/10.1038/s41558-020-0790-4.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 15751589, https://doi.org/10.5194/hess-18-1575-2014.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Search Google Scholar
    • Export Citation
  • Sudradjat, A., K. L. Brubaker, and P. A. Dirmeyer, 2003: Interannual variability of surface evaporative moisture sources of warm-season precipitation in the Mississippi River basin. J. Geophys. Res., 108, 8612, https://doi.org/10.1029/2002JD003061.

    • Search Google Scholar
    • Export Citation
  • Tarek, M., F. P. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci., 24, 25272544, https://doi.org/10.5194/hess-24-2527-2020.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 2006: The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J. Atmos. Sci., 63, 10561068, https://doi.org/10.1175/JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999a: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999b: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, https://doi.org/10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., 2019: WAM2layersPython. Github, accessed 20 November 2019, https://github.com/ruudvdent/WAM2layersPython.

  • van der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., O. A. Tuinenburg, H. R. Knoche, H. Kunstmann, and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, https://doi.org/10.5194/hess-17-4869-2013.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije, 2014: Contrasting roles of interception and transpiration in the hydrological cycle—Part 2: Moisture recycling. Earth Syst. Dyn., 5, 471489, https://doi.org/10.5194/esd-5-471-2014.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and S.-k. Lee, 2007: Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett., 34, L02703, https://doi.org/10.1029/2006GL028579.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and T.-C. Chen, 2009: The late-spring maximum of rainfall over the U.S. central Plains and the role of the low-level jet. J. Climate, 22, 46964709, https://doi.org/10.1175/2009JCLI2719.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Schubert, and H. Wang, 2009: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Climate, 22, 54015420, https://doi.org/10.1175/2009JCLI2984.1.

    • Search Google Scholar
    • Export Citation
  • Weng, S.-P., 2000: A new perspective on the regional hydrologic cycle over North and South America. Ph.D. thesis, Iowa State University, 172 pp., https://core.ac.uk/download/pdf/38909828.pdf.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., K. Furtado, P. Wu, T. Zhou, R. Chadwick, C. Marzin, J. Rostron, and D. Sexton, 2021: Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv., 7, eabf8021, https://doi.org/10.1126/sciadv.abf8021.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., L. R. Leung, F. Song, and J. Lu, 2021: Future changes in the Great Plains low-level jet governed by seasonally dependent pattern changes in the North Atlantic subtropical high. Geophys. Res. Lett., 48, e2020GL090356, https://doi.org/10.1029/2020GL090356.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., L. R. Leung, and J. Lu, 2022: Seasonally dependent future changes in the U.S. Midwest hydroclimate and extremes. J. Climate, 35, 1727, https://doi.org/10.1175/JCLI-D-21-0012.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 473 473 55
Full Text Views 209 209 28
PDF Downloads 235 235 31