Processes Contributing to Bering Sea Temperature Variability in the Late Twentieth and Early Twenty-First Century

Emily E. Hayden aCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Emily E. Hayden in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6583-9654
and
Larry W. O’Neill aCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over recent decades, the Bering Sea has experienced oceanic and atmospheric climate extremes, including record warm ocean temperature anomalies and marine heatwaves (MHWs), and increasingly variable air–sea heat fluxes. In this work, we assess the relative roles of surface forcing and ocean dynamical processes on mixed layer temperature (MLT) tendency by computing a closed mixed layer heat budget using the NASA/JPL Estimating the Circulation and Climate of the Ocean (ECCO) Ocean State and Sea Ice Estimate. We show that surface forcing drives the majority of the MLT tendency in the spring and fall and remains dominant to a lesser degree in winter and summer. Surface forcing anomalies are the dominant driver of monthly mixed layer temperature tendency anomalies (MLTa), driving an average of 72% of the MLTa over the ECCO record length (1992–2017). The surface turbulent heat flux (latent plus sensible) accounts for most of the surface heat flux anomalies in January–April and September–December, and the net radiative flux (net longwave plus net shortwave) dominates the surface heat flux anomalies in May–August. Our results suggest that atmospheric variability plays a significant role in Bering Sea ocean temperature anomalies through most of the year. Furthermore, they indicate a recent increase in ocean warming surface forcing anomalies, beginning in 2010.

Significance Statement

In recent years, the Bering Sea has experienced extremes in ocean temperature, which have had adverse impacts on ocean ecology and marine fisheries and have contributed to increasingly variable sea ice extent. Our results identify anomalous heating by air–sea heat flux anomalies as the process responsible for most of the observed ocean temperature anomalies over the period 1992–2017. We additionally show that there has been an increase in atmosphere-driven ocean warming since 2010. Our work highlights the importance of investigating how ocean–atmosphere interactions might change under future climate change and how this will impact the Bering Sea.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily E. Hayden, haydenem@oregonstate.edu

Abstract

Over recent decades, the Bering Sea has experienced oceanic and atmospheric climate extremes, including record warm ocean temperature anomalies and marine heatwaves (MHWs), and increasingly variable air–sea heat fluxes. In this work, we assess the relative roles of surface forcing and ocean dynamical processes on mixed layer temperature (MLT) tendency by computing a closed mixed layer heat budget using the NASA/JPL Estimating the Circulation and Climate of the Ocean (ECCO) Ocean State and Sea Ice Estimate. We show that surface forcing drives the majority of the MLT tendency in the spring and fall and remains dominant to a lesser degree in winter and summer. Surface forcing anomalies are the dominant driver of monthly mixed layer temperature tendency anomalies (MLTa), driving an average of 72% of the MLTa over the ECCO record length (1992–2017). The surface turbulent heat flux (latent plus sensible) accounts for most of the surface heat flux anomalies in January–April and September–December, and the net radiative flux (net longwave plus net shortwave) dominates the surface heat flux anomalies in May–August. Our results suggest that atmospheric variability plays a significant role in Bering Sea ocean temperature anomalies through most of the year. Furthermore, they indicate a recent increase in ocean warming surface forcing anomalies, beginning in 2010.

Significance Statement

In recent years, the Bering Sea has experienced extremes in ocean temperature, which have had adverse impacts on ocean ecology and marine fisheries and have contributed to increasingly variable sea ice extent. Our results identify anomalous heating by air–sea heat flux anomalies as the process responsible for most of the observed ocean temperature anomalies over the period 1992–2017. We additionally show that there has been an increase in atmosphere-driven ocean warming since 2010. Our work highlights the importance of investigating how ocean–atmosphere interactions might change under future climate change and how this will impact the Bering Sea.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily E. Hayden, haydenem@oregonstate.edu
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., A. J. Miller, S.-P. Xie, and Y. Kosaka, 2020: Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun., 11, 1903, https://doi.org/10.1038/s41467-020-15820-w.

    • Search Google Scholar
    • Export Citation
  • Azen, R., and D. V. Budescu, 2003: The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods, 8, 129148, https://doi.org/10.1037/1082-989X.8.2.129.

    • Search Google Scholar
    • Export Citation
  • Basyuk, E., and Y. Zuenko, 2020: Extreme oceanographic conditions in the northwestern Bering Sea in 2017–2018. Deep-Sea Res. II, 181, 104909, https://doi.org/10.1016/j.dsr2.2020.104909.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, https://doi.org/10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423, https://doi.org/10.1175/BAMS-D-11-00244.1.

    • Search Google Scholar
    • Export Citation
  • Budescu, D. V., 1993: Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull., 114, 542551, https://doi.org/10.1037/0033-2909.114.3.542.

    • Search Google Scholar
    • Export Citation
  • Carvalho, K., T. Smith, and S. Wang, 2021: Bering Sea marine heatwaves: Patterns, trends and connections with the Arctic. J. Hydrol., 600, 126462, https://doi.org/10.1016/j.jhydrol.2021.126462.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 881889, https://doi.org/10.5194/tc-6-881-2012.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1983: Effects of sampling errors in statistical estimation. Deep-Sea Res., 30A, 10831103, https://doi.org/10.1016/0198-0149(83)90062-6.

    • Search Google Scholar
    • Export Citation
  • Coachman, L., 1986: Circulation, water masses, and fluxes on the southeastern Bering Sea shelf. Cont. Shelf Res., 5, 23108, https://doi.org/10.1016/0278-4343(86)90011-7.

    • Search Google Scholar
    • Export Citation
  • Danielson, S., L. Eisner, T. Weingartner, and K. Aagaard, 2010: Thermal and haline variability over the central Bering Sea shelf: Seasonal and interannual perspectives. Cont. Shelf Res., 31, 539554, https://doi.org/10.1016/j.csr.2010.12.010.

    • Search Google Scholar
    • Export Citation
  • Danielson, S., E. Curchitser, K. Hedstrom, T. Weingartner, and P. Stabeno, 2011: On ocean and sea ice modes of variability in the Bering Sea. J. Geophys. Res., 116, C12034, https://doi.org/10.1029/2011JC007389.

    • Search Google Scholar
    • Export Citation
  • Danielson, S., and Coauthors, 2020: Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves. Deep-Sea Res. II, 177, 104781, https://doi.org/10.1016/j.dsr2.2020.104781.

    • Search Google Scholar
    • Export Citation
  • Davy, R., and S. Outten, 2020: The Arctic surface climate in CMIP6: Status and developments since CMIP5. J. Climate, 33, 80478068, https://doi.org/10.1175/JCLI-D-19-0990.1.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Search Google Scholar
    • Export Citation
  • ECCO Consortium, I. Fukumori, O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. Ponte, 2017a: ECCO central estimate (version 4 release 4). accessed xxxx, https://www.ecco-group.org/products-ECCO-V4r4.htm.

  • ECCO Consortium, and Coauthors, 2017b: A twenty-year dynamical oceanic climatology: 1994–2013. Part 1: Active scalar fields: Temperature, salinity, dynamic topography, mixed-layer depth, bottom pressure. NASA-JPL Tech. Rep., 54 pp., http://hdl.handle.net/1721.1/107613.

  • ECCO Consortium, I. Fukumori, O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. Ponte, 2021: Synopsis of the ECCO central production global ocean and sea-ice state estimate (version 4 release 4). Tech. Rep., 17 pp., https://doi.org/10.5281/zenodo.4533349.

  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360364, https://doi.org/10.1038/s41586-018-0383-9.

    • Search Google Scholar
    • Export Citation
  • Halkides, D., D. E. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015: Quantifying the processes controlling intraseasonal mixed-layer temperature variability in the tropical Indian Ocean. J. Geophys. Res. Oceans, 120, 692715, https://doi.org/10.1002/2014JC010139.

    • Search Google Scholar
    • Export Citation
  • Hassol, S. J., and R. W. Corell, 2004: Impacts of a Warming Arctic: Arctic Climate Impact Assessment (ACIA). Cambridge University Press, 139 pp.

  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and P. J. Stabeno, 2017: Deep Bering Sea circulation and variability, 2001–2016, from Argo data. J. Geophys. Res. Oceans, 122, 97659779, https://doi.org/10.1002/2017JC013425.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and J. M. Lyman, 2020: Warming trends increasingly dominate global ocean. Nat. Climate Change, 10, 757761, https://doi.org/10.1038/s41558-020-0822-0.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, https://doi.org/10.1029/2000JC000736.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and P. J. Stabeno, 2012: Stratification on the eastern Bering Sea shelf revisited. Deep-Sea Res. II, 65, 7283, https://doi.org/10.1016/j.dsr2.2012.02.009.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

  • Losch, M., D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, https://doi.org/10.1016/j.ocemod.2009.12.008.

    • Search Google Scholar
    • Export Citation
  • Luchin, V. A., V. A. Menovshchikov, V. M. Lavrentiev, and R. K. Reed, 1999: Thermohaline structure and water masses in the Bering Sea. Dynamics of the Bering Sea, University of Alaska Sea Grant, 61–91.

  • Lyu, G., A. Koehl, N. Serra, D. Stammer, and J. Xie, 2021: Arctic ocean–sea ice reanalysis for the period 2007–2016 using the adjoint method. Quart. J. Roy. Meteor. Soc., 147, 19081929, https://doi.org/10.1002/qj.4002.

    • Search Google Scholar
    • Export Citation
  • Meredith, M., and Coauthors, 2019: Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, 203–220,https://www.ipcc.ch/srocc/chapter.

  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2009: Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization. J. Geophys. Res., 114, C11014, https://doi.org/10.1029/2008JC005121.

    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., H. Pillar, V. Ocaña, A. Bigdeli, T. A. Smith, and P. Heimbach, 2021: The Arctic Subpolar gyre sTate Estimate: Description and assessment of a data-constrained, dynamically consistent ocean-sea ice estimate for 2002–2017. J. Adv. Model. Earth Syst., 13, e2020MS002398, https://doi.org/10.1029/2020MS002398.

    • Search Google Scholar
    • Export Citation
  • Ohno, Y., N. Iwasaka, F. Kobashi, and Y. Sato, 2009: Mixed layer depth climatology of the North Pacific based on Argo observations. J. Oceanogr., 65 (1), 116, https://doi.org/10.1007/s10872-009-0001-4.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W. Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. Annu. Rev. Mar. Sci., 13, 313342, https://doi.org/10.1146/annurev-marine-032720-095144.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 1981: Marine climatology of the Bering Sea. The Eastern Bering Sea Shelf: Oceanography and Resources, D. W. Hood and J. A. Calder, Eds., U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 15–22.

  • Overland, J. E., M. Wang, K. R. Wood, D. B. Percival, and N. A. Bond, 2012: Recent Bering Sea warm and cold events in a 95-year context. Deep-Sea Res. II, 65, 613, https://doi.org/10.1016/j.dsr2.2012.02.013.

    • Search Google Scholar
    • Export Citation
  • Pachauri, R. K., and Coauthors, 2014: Climate Change 2014: Synthesis Report. IPCC, 151 pp., https://public.wmo.int/en/resources/library/climate-change-2014-synthesis-report.

  • Parkinson, C. L., and D. J. Cavalieri, 2008: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113, C07003, https://doi.org/10.1029/2007JC004558.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., 2020: M_Map: A mapping package for MATLAB, version 1.4m (computer software). UBC EOAS, accessed 26 May 2023, https://www.eoas.ubc.ca/∼rich/map.html.

  • Pease, C. H., 1980: Eastern Bering Sea ice processes. Mon. Wea. Rev., 108, 20152023, https://doi.org/10.1175/1520-0493(1980)108<2015:EBSIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., 2017: A note on evaluating budgets in ECCO version 4 release 3. Accessed 4 May 2022, https://ecco.jpl.nasa.gov/drive/files/Version4/Release/doc/evaluating_budgets_in_eccov4r3.pdf.

  • Reed, R. K., 1978: The heat budget of a region in the eastern Bering Sea, summer 1976. J. Geophys. Res., 83, 36353645, https://doi.org/10.1029/JC083iC07p03635.

    • Search Google Scholar
    • Export Citation
  • Reed, R. K., 2003: A surface heat flux climatology over a region of the eastern Bering Sea. Cont. Shelf Res., 23, 12551263, https://doi.org/10.1016/S0278-4343(03)00128-6.

    • Search Google Scholar
    • Export Citation
  • Reed, R. K., and P. Stabeno, 2002: Surface heat fluxes and subsurface heat content at a site over the southeastern Bering Sea shelf, May–July 1996. Deep-Sea Res. II, 49, 59115917, https://doi.org/10.1016/S0967-0645(02)00325-9.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526529, https://doi.org/10.1126/science.283.5401.526.

    • Search Google Scholar
    • Export Citation
  • Ruela, R., M. Sousa, M. deCastro, and J. Dias, 2020: Global and regional evolution of sea surface temperature under climate change. Global Planet. Change, 190, 103190, https://doi.org/10.1016/j.gloplacha.2020.103190.

    • Search Google Scholar
    • Export Citation
  • Scannell, H. A., A. J. Pershing, M. A. Alexander, A. C. Thomas, and K. E. Mills, 2016: Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett., 43, 20692076, https://doi.org/10.1002/2015GL067308.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper-ocean temperature variability in coupled climate models and observations? J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., and S. W. Bell, 2019: Extreme conditions in the Bering Sea (2017–2018): Record-breaking low sea-ice extent. Geophys. Res. Lett., 46, 89528959, https://doi.org/10.1029/2019GL083816.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., and J. D. Schumacher, 1998: The continental shelf of the Bering Sea. The Global Coastal Ocean: Regional Studies and Synthesis, A. R. Robinson and K. H. Brink, Eds., John Wiley & Sons, 789–823.

  • Stabeno, P. J., J. D. Schumacher, and K. Ohtani, 1999: The physical oceanography of the Bering Sea. Dynamics of the Bering Sea, University of Alaska Fairbanks, 1–28.

  • Stabeno, P. J., N. Bond, and S. Salo, 2007: On the recent warming of the southeastern Bering Sea shelf. Deep-Sea Res. II, 54, 25992618, https://doi.org/10.1016/j.dsr2.2007.08.023.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., J. Duffy-Anderson, L. Eisner, E. Farley, R. Heintz, and C. Mordy, 2017: Return of warm conditions in the southeastern Bering Sea: Physics to fluorescence. PLOS ONE, 12, e0185464, https://doi.org/10.1371/journal.pone.0185464.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Sullivan, M. E., N. B. Kachel, C. W. Mordy, S. A. Salo, and P. J. Stabeno, 2014: Sea ice and water column structure on the eastern Bering Sea shelf. Deep-Sea Res. II, 109, 3956, https://doi.org/10.1016/j.dsr2.2014.05.009.

    • Search Google Scholar
    • Export Citation
  • Thyng, K. M., C. A. Greene, R. D. Hetland, H. M. Zimmerle, and S. F. DiMarco, 2016: True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29, 913, https://doi.org/10.5670/oceanog.2016.66.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, and H. Mukougawa, 2017: Early 20th-century arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA, 114, 62276232, https://doi.org/10.1073/pnas.1615880114.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1979: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Wang, M., Q. Yang, J. E. Overland, and P. Stabeno, 2018: Sea-ice cover timing in the Pacific Arctic: The present and projections to mid-century by selected CMIP5 models. Deep-Sea Res. II, 152, 2234, https://doi.org/10.1016/j.dsr2.2017.11.017.

    • Search Google Scholar
    • Export Citation
  • Wang, O., I. Fukumori, and I. Fenty, 2020: ECCO version 4 release 4 user guide. Tech. Rep., 14 pp., https://ecco-group.org/docs/v4r4_user_guide.pdf.

  • Wirts, A. E., and G. C. Johnson, 2005: Recent interannual upper ocean variability in the deep southeastern Bering Sea. J. Mar. Res., 63, 381405, https://doi.org/10.1357/0022240053693725.

    • Search Google Scholar
    • Export Citation
  • Wooster, W. S., and A. B. Hollowed, 1995: Decadal-scale variations in the eastern subarctic Pacific: 1. Winter ocean conditions. Can. Spec. Publ. Fish. Aquat. Sci., 121, 8185.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2007: Observational evidence of winter spice injection. J. Phys. Oceanogr., 37, 28952919, https://doi.org/10.1175/2007JPO3629.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 821 664 52
Full Text Views 330 280 4
PDF Downloads 376 306 4