Coupled Stratospheric Ozone and Atlantic Meridional Overturning Circulation Feedbacks on the Northern Hemisphere Midlatitude Jet Response to 4xCO2

Clara Orbe aNASA Goddard Institute for Space Studies, New York, New York
bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
,
David Rind aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by David Rind in
Current site
Google Scholar
PubMed
Close
,
Darryn W. Waugh cDepartment of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Jonas aNASA Goddard Institute for Space Studies, New York, New York
dCenter for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Jeffrey Jonas in
Current site
Google Scholar
PubMed
Close
,
Xiyue Zhang cDepartment of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Xiyue Zhang in
Current site
Google Scholar
PubMed
Close
,
Gabriel Chiodo eInstitute for Atmospheric and Climate Science, Zurich, Switzerland

Search for other papers by Gabriel Chiodo in
Current site
Google Scholar
PubMed
Close
,
Larissa Nazarenko aNASA Goddard Institute for Space Studies, New York, New York
dCenter for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Larissa Nazarenko in
Current site
Google Scholar
PubMed
Close
, and
Gavin A. Schmidt aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gavin A. Schmidt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2 have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2 forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Orbe, clara.orbe@nasa.gov

Abstract

Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2 have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2 forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Orbe, clara.orbe@nasa.gov
Save
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, https://doi.org/10.1029/2000JC900074.

    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., and Coauthors, 2020: Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos., 125, e2019JD032345, https://doi.org/10.1029/2019JD032345.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., and Coauthors, 2020: Historical (1850–2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001978, https://doi.org/10.1029/2019MS001978.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., V. L. Meccia, R. D’Agostino, F. Fabiano, S. M. Larson, J. von Hardenberg, and S. Corti, 2023: Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model. Climate Dyn., 61, 33973416, https://doi.org/10.1007/s00382-023-06754-2.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, https://doi.org/10.1007/s40641-015-0010-x.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory, 2018: Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Climate, 31, 10911105, https://doi.org/10.1175/JCLI-D-17-0323.1.

    • Search Google Scholar
    • Export Citation
  • Chiodo, G., and L. M. Polvani, 2019: The response of the ozone layer to quadrupled CO2 concentrations: Implications for climate. J. Climate, 32, 76297642, https://doi.org/10.1175/JCLI-D-19-0086.1.

    • Search Google Scholar
    • Export Citation
  • Chiodo, G., L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, E. Rozanov, S. Muthers, and K. Tsigaridis, 2018: The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, 38933907, https://doi.org/10.1175/JCLI-D-17-0492.1.

    • Search Google Scholar
    • Export Citation
  • Cowan, T., and W. Cai, 2013: The response of the large-scale ocean circulation to 20th century Asian and non-Asian aerosols. Geophys. Res. Lett., 40, 27612767, https://doi.org/10.1002/grl.50587.

    • Search Google Scholar
    • Export Citation
  • DallaSanta, K., C. Orbe, D. Rind, L. Nazarenko, and J. Jonas, 2021a: Dynamical and trace gas responses of the quasi-biennial oscillation to increased CO2. J. Geophys. Res. Atmos., 126, e2020JD034151, https://doi.org/10.1029/2020JD034151.

    • Search Google Scholar
    • Export Citation
  • DallaSanta, K., C. Orbe, D. Rind, L. Nazarenko, and J. Jonas, 2021b: Response of the quasi-biennial oscillation to historical volcanic eruptions. Geophy. Res. Lett., 48, e2021GL095412, https://doi.org/10.1029/2021GL095412.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and K. W. Dixon, 2000: Implications of the recent trend in the Arctic/North Atlantic Oscillation for the North Atlantic thermohaline circulation. J. Climate, 13, 37213727, https://doi.org/10.1175/1520-0442(2000)013<3721:IOTRTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941962, https://doi.org/10.1175/JCLI-D-15-0396.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, https://doi.org/10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2019: Impacts of the North Atlantic warming hole in future climate projections: Mean atmospheric circulation and the North Atlantic jet. J. Climate, 32, 26732689, https://doi.org/10.1175/JCLI-D-18-0647.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, https://doi.org/10.1002/2014GL061638.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 51385192, https://doi.org/10.1016/j.atmosenv.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, and R. A. Wood, 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dyn., 45, 32993316, https://doi.org/10.1007/s00382-015-2540-2.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and Coauthors, 2023: Understanding AMOC stability: The North Atlantic hosing model intercomparison project. Geosci. Model Dev., 16, 19751995, https://doi.org/10.5194/gmd-16-1975-2023.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2000: Small Scale Processes in Geophysical Fluid Flows. 1st ed. Elsevier, 750 pp.

  • Kelley, M., and Coauthors, 2020: GISS-E2. 1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Khatri, H., R. G. Williams, T. Woollings, and D. M. Smith, 2022: Fast and slow subpolar ocean responses to the North Atlantic Oscillation: Thermal and dynamical changes. Geophys. Res. Lett., 49, e2022GL101480, https://doi.org/10.1029/2022GL101480.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Li, F., and P. A. Newman, 2023: Prescribing stratospheric chemistry overestimates Southern Hemisphere climate change during austral spring in response to quadrupled CO2. Climate Dyn., 61, 11051122, https://doi.org/10.1007/s00382-022-06588-4.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1987: On the development of the theory of the QBO. Bull. Amer. Meteor. Soc., 68, 329337, https://doi.org/10.1175/1520-0477(1987)068<0329:OTDOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

    • Search Google Scholar
    • Export Citation
  • Ma, L., T. Woollings, R. G. Williams, D. Smith, and N. Dunstone, 2020: How does the winter jet stream affect surface temperature, heat flux, and sea ice in the North Atlantic? J. Climate, 33, 37113730, https://doi.org/10.1175/JCLI-D-19-0247.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLinden, C. A., S. C. Olsen, B. Hannegan, O. Wild, M. J. Prather, and J. Sundet, 2000: Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. J. Geophys. Res., 105, 14 65314 665, https://doi.org/10.1029/2000JD900124.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The Shared Socio-economic Pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., D. Waugh, and K. Grise, 2019: Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys. Res. Lett., 46, 70457053, https://doi.org/10.1029/2019GL083345.

    • Search Google Scholar
    • Export Citation
  • Meraner, K., S. Rast, and H. Schmidt, 2020: How useful is a linear ozone parameterization for global climate modeling? J. Adv. Model. Earth Syst., 12, e2019MS002003, https://doi.org/10.1029/2019MS002003.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2021: CMIP6 historical simulations (1850–2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, e2019MS002034, https://doi.org/10.1029/2019MS002034.

    • Search Google Scholar
    • Export Citation
  • Mitevski, I., C. Orbe, R. Chemke, L. Nazarenko, and L. M. Polvani, 2021: Non-monotonic response of the climate system to abrupt CO2 forcing. Geophys. Res. Lett., 48, e2020GL090861, https://doi.org/10.1029/2020GL090861.

    • Search Google Scholar
    • Export Citation
  • Muthers, S., C. C. Raible, E. Rozanov, and T. F. Stocker, 2016: Response of the AMOC to reduced solar radiation–the modulating role of atmospheric chemistry. Earth Syst. Dyn., 7, 877892, https://doi.org/10.5194/esd-7-877-2016.

    • Search Google Scholar
    • Export Citation
  • Nowack, P. J., N. Luke Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nat. Climate Change, 5, 4145, https://doi.org/10.1038/nclimate2451.

    • Search Google Scholar
    • Export Citation
  • O’Callaghan, A., M. Joshi, D. Stevens, and D. Mitchell, 2014: The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett., 41, 77397745, https://doi.org/10.1002/2014GL062179.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—2. Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coauthors, 2023: Atmospheric response to a collapse of the North Atlantic circulation under a mid-range future climate scenario: A regime shift in Northern Hemisphere dynamics. J. Climate, 36, 66696693, https://doi.org/10.1175/JCLI-D-22-0841.1.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., J. Kim, E. Manzini, and J. Kröger, 2012: A stratospheric connection to Atlantic climate variability. Nat. Geosci., 5, 783787, https://doi.org/10.1038/ngeo1586.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russell, 1988: The GISS global climate-middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45, 329370, https://doi.org/10.1175/1520-0469(1988)045<0329:TGGCMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Jonas, N. K. Balachandran, G. A. Schmidt, and J. Lean, 2014: The QBO in two GISS global climate models: 1. Generation of the QBO. J. Geophys. Res. Atmos., 119, 87988824, https://doi.org/10.1002/2014JD021678.

    • Search Google Scholar
    • Export Citation
  • Rind, D., G. A. Schmidt, J. Jonas, R. Miller, L. Nazarenko, M. Kelley, and J. Romanski, 2018: Multicentury instability of the Atlantic meridional circulation in rapid warming simulations with GISS ModelE2. J. Geophys. Res. Atmos., 123, 63316355, https://doi.org/10.1029/2017JD027149.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—Model structure, climatology, variability, and climate sensitivity. J. Geophys. Res. Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204.

    • Search Google Scholar
    • Export Citation
  • Roach, L. A., E. Blanchard-Wrigglesworth, S. Ragen, W. Cheng, K. C. Armour, and C. M. Bitz, 2022: The impact of winds on AMOC in a fully-coupled climate model. Geophys. Res. Lett., 49, e2022GL101203, https://doi.org/10.1029/2019JD032204.

    • Search Google Scholar
    • Export Citation
  • Robson, J., and Coauthors, 2022: The role of anthropogenic aerosol forcing in the 1850–1985 strengthening of the AMOC in CMIP6 historical simulations. J. Climate, 35, 68436863, https://doi.org/10.1175/JCLI-D-22-0124.1.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., and Coauthors, 2023: Stochastic bifurcation of the North Atlantic circulation under a mid-range future climate scenario with the NASA-GISS ModelE. J. Climate, 36, 61416161, https://doi.org/10.1175/JCLI-D-22-0536.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446, https://doi.org/10.1175/2009JCLI3167.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 11391164, https://doi.org/10.5194/gmd-12-1139-2019.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., P. Ortega, J. Mignot, E. Guilyardi, V. Masson-Delmotte, P. G. Butler, M. Khodri, and R. Séférian, 2015: Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat. Commun., 6, 6545, https://doi.org/10.1038/ncomms7545.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., H. Cullen, G. Krahmann, and N. Naik, 1998: An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25, 45214524, https://doi.org/10.1029/1998GL900162.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Yuval, J., and Y. Kaspi, 2020: Eddy activity response to global warming–like temperature changes. J. Climate, 33, 13811404, https://doi.org/10.1175/JCLI-D-19-0190.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2014: A simple model of the response of the Atlantic to the North Atlantic Oscillation. J. Climate, 27, 40524069, https://doi.org/10.1175/JCLI-D-13-00330.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, https://doi.org/10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., D. W. Waugh, and C. Orbe, 2023: Dependence of Northern Hemisphere tropospheric transport on the midlatitude jet under abrupt CO2 increase. J. Geophys. Res. Atmos., 128, e2022JD038454, https://doi.org/10.1029/2022JD038454.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 535 535 40
Full Text Views 180 180 18
PDF Downloads 234 234 23