Quantification of Contributions from Different Dust Sources to the Distribution and the Variation of Spring Dust over the Tibetan Plateau and Corresponding Mechanisms since 2000

Qingzhe Zhu aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bDepartment of Marine Meteorology, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Qingzhe Zhu in
Current site
Google Scholar
PubMed
Close
,
Yuzhi Liu cKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yuzhi Liu in
Current site
Google Scholar
PubMed
Close
, and
Na Xiao eWeather Modification Office of Shandong Province Peoples Government, Jinan, China

Search for other papers by Na Xiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dust is the predominant type of aerosol over the Tibetan Plateau (TP) due to the existence of surrounding significant dust sources. However, the contributions of different dust sources to the distribution and variation of dust over the TP and corresponding mechanisms are still being explored. By separating emissions from different dust sources in a numerical model, this study detected that dust originating from East Asia, the Middle East, and North Africa are the main contributors to spring dust over the TP, accounting for 42%–68%, 13%–27%, and 9%–25% of the total dust concentration, respectively. East Asian dust primarily affects the dust over the central and northern parts of the TP, whereas Middle Eastern and North African dust mainly contributes to the dust over the western and southern parts of the TP. Additionally, the variation in dust over the TP is related to East Asian and North African dust, which contribute 58% and 35% of the total variation, respectively. The mechanism underlying this association is attributable to the SST over the northern North Atlantic and updrafts over the northern slope of the TP: the increased SST enhances westerlies from North Africa to East Asia and northwesterly winds over the northern slope of the TP and combines with the stronger westerlies to promote the transport of East Asian and North African dust to the TP. Consequently, it is necessary to focus on the impact of multiple dust sources on the dust over the TP.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhi Liu, liuyzh@lzu.edu.cn

Abstract

Dust is the predominant type of aerosol over the Tibetan Plateau (TP) due to the existence of surrounding significant dust sources. However, the contributions of different dust sources to the distribution and variation of dust over the TP and corresponding mechanisms are still being explored. By separating emissions from different dust sources in a numerical model, this study detected that dust originating from East Asia, the Middle East, and North Africa are the main contributors to spring dust over the TP, accounting for 42%–68%, 13%–27%, and 9%–25% of the total dust concentration, respectively. East Asian dust primarily affects the dust over the central and northern parts of the TP, whereas Middle Eastern and North African dust mainly contributes to the dust over the western and southern parts of the TP. Additionally, the variation in dust over the TP is related to East Asian and North African dust, which contribute 58% and 35% of the total variation, respectively. The mechanism underlying this association is attributable to the SST over the northern North Atlantic and updrafts over the northern slope of the TP: the increased SST enhances westerlies from North Africa to East Asia and northwesterly winds over the northern slope of the TP and combines with the stronger westerlies to promote the transport of East Asian and North African dust to the TP. Consequently, it is necessary to focus on the impact of multiple dust sources on the dust over the TP.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhi Liu, liuyzh@lzu.edu.cn
Save
  • Che, H., and Coauthors, 2015: Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys., 15, 76197652, https://doi.org/10.5194/acp-15-7619-2015.

    • Search Google Scholar
    • Export Citation
  • Chen, S., J. Huang, C. Zhao, Y. Qian, L. R. Leung, and B. Yang, 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos., 118, 797812, https://doi.org/10.1002/jgrd.50122.

    • Search Google Scholar
    • Export Citation
  • Dai, T., G. Shi, and T. Nakajima, 2015: Analysis and evaluation of the global aerosol optical properties simulated by an online aerosol-coupled non-hydrostatic icosahedral atmospheric model. Adv. Atmos. Sci., 32, 743758, https://doi.org/10.1007/s00376-014-4098-z.

    • Search Google Scholar
    • Export Citation
  • Dai, T., Y. Cheng, P. Zhang, G. Shi, M. Sekiguchi, K. Suzuki, D. Goto, and T. Nakajima, 2018: Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model. Atmos. Environ., 190, 99115, https://doi.org/10.1016/j.atmosenv.2018.07.016.

    • Search Google Scholar
    • Export Citation
  • Dong, Z., Z. Li, F. Wang, and M. Zhang, 2009: Characteristics of atmospheric dust deposition in snow on the glaciers of the eastern Tien Shan, China. J. Glaciol., 55, 797804, https://doi.org/10.3189/002214309790152393.

    • Search Google Scholar
    • Export Citation
  • Dong, Z., D. Qin, S. Kang, J. Ren, J. Chen, X. Cui, Z. Du, and X. Qin, 2014: Physicochemical characteristics and sources of atmospheric dust deposition in snow packs on the glaciers of western Qilian Mountains, China. Tellus, 66B, 20956, https://doi.org/10.3402/tellusb.v66.20956.

    • Search Google Scholar
    • Export Citation
  • Dong, Z., J. Brahney, S. Kang, J. Elser, T. Wei, X. Jiao, and Y. Shao, 2020: Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region: New evidences from alpine snow and ice. Earth-Sci. Rev., 211, 103408, https://doi.org/10.1016/j.earscirev.2020.103408.

    • Search Google Scholar
    • Export Citation
  • Feng, X., and Coauthors, 2020: Increased dust aerosols in the high troposphere over the Tibetan Plateau from 1990s to 2000s. J. Geophys. Res. Atmos., 124, e2020JD032807, https://doi.org/10.1029/2020JD032807.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and Coauthors, 2022: CALIOP-based quantification of Central Asian dust transport. Remote Sens., 14, 1416, https://doi.org/10.3390/rs14061416.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., J. Huang, Z. Zhao, Q. Jin, Y. Ma, and B. Yang, 2020: Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmos. Chem. Phys., 20, 15071529, https://doi.org/10.5194/acp-20-1507-2020.

    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938.

    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, https://doi.org/10.1029/2008JD010620.

    • Search Google Scholar
    • Export Citation
  • Jia, R., Y. Liu, B. Chen, Z. Zhang, and J. Huang, 2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210219, https://doi.org/10.1016/j.atmosenv.2015.10.038.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Y. Zhang, Y. Zhang, B. Grigholm, S. Kaspari, D. Qin, J. Ren, and P. Mayewski, 2010: Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmos. Environ., 44, 29802989, https://doi.org/10.1016/j.atmosenv.2010.05.014.

    • Search Google Scholar
    • Export Citation
  • Kok, J. F., 2011: A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA, 108, 10161021, https://doi.org/10.1073/pnas.1014798108.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, https://doi.org/10.1029/2006GL027546.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., C. Yuan, and Z. Li, 2018: Origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL): The roles of monsoon dynamics. Sci. Rep., 8, 3960, https://doi.org/10.1038/s41598-018-22267-z.

    • Search Google Scholar
    • Export Citation
  • Li, F., X. Wan, H. Wang, Y. J. Orsolini, Z. Cong, Y. Gao, and S. Kang, 2020: Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Climate Change, 10, 10371044, https://doi.org/10.1038/s41558-020-0881-2.

    • Search Google Scholar
    • Export Citation
  • Li, P., G. Wu, X. Zhang, N. Yan, and X. Zhang, 2019: Variation in atmospheric dust since 1950 from an ice core in the central Tibetan Plateau and its relationship to atmospheric circulation. Atmos. Res., 220, 1019, https://doi.org/10.1016/j.atmosres.2018.12.030.

    • Search Google Scholar
    • Export Citation
  • Liu, G., J. Li, and T. Ying, 2023: The shift of decadal trend in Middle East dust activities attributed to North Tropical Atlantic variability. Sci. Bull., 68, 14391446, https://doi.org/10.1016/j.scib.2023.05.031.

    • Search Google Scholar
    • Export Citation
  • Liu, L., and Coauthors, 2019: Contrasting influence of Gobi and Taklimakan deserts on the dust aerosols in western North America. Geophys. Res. Lett., 46, 90649071, https://doi.org/10.1029/2019GL083508.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Z. Huang, Z. Hu, Q. Dong, and S. Li, 2022: Long-range transport and evolution of Saharan dust over East Asia from 2007 to 2020. J. Geophys. Res. Atmos., 127, e2022JD036974, https://doi.org/10.1029/2022JD036974.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. Zhu, J. Huang, S. Hua, and R. Jia, 2019: Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Environ., 209, 6777, https://doi.org/10.1016/j.atmosenv.2019.04.001.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. Huang, T. Wang, J. M. Li, H. R. Yan, and Y. L. He, 2022: Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth-Sci. Rev., 234, 104216, https://doi.org/10.1016/j.earscirev.2022.104216.

    • Search Google Scholar
    • Export Citation
  • Mao, R., Z. Hu, C. Zhao, D.-Y. Gong, D. Guo, and G. Wu, 2019: The source contributions to the dust over the Tibetan Plateau: A modeling analysis. Atmos. Environ., 214, 116859, https://doi.org/10.1016/j.atmosenv.2019.116859.

    • Search Google Scholar
    • Export Citation
  • Martonchik, J. V., D. J. Diner, K. A. Crean, and M. A. Bull, 2002: Regional aerosol retrieval results from MISR. IEEE Trans. Geosci. Remote Sens., 40, 15201531, https://doi.org/10.1109/TGRS.2002.801142.

    • Search Google Scholar
    • Export Citation
  • Osada, K., H. Iida, M. Kido, K. Matsunaga, and Y. Iwasaka, 2004: Mineral dust layers in snow at Mount Tateyama, central Japan: Formation processes and characteristics. Tellus, 56B, 382392, https://doi.org/10.3402/tellusb.v56i4.16436.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-Hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1.

    • Search Google Scholar
    • Export Citation
  • Sun, E., and Coauthors, 2019a: Variation in MERRA-2 aerosol optical depth over the Yangtze River delta from 1980 to 2016. Theor. Appl. Climatol., 136, 363375, https://doi.org/10.1007/s00704-018-2490-9.

    • Search Google Scholar
    • Export Citation
  • Sun, E., X. Xu, H. Che, Z. Tang, K. Gui, L. An, C. Lu, and G. Shi, 2019b: Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol.-Terr. Phys., 186, 819, https://doi.org/10.1016/j.jastp.2019.01.019.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T. Y. Nakajima, and G. L. Stephens, 2008: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett., 35, L19817, https://doi.org/10.1029/2008GL035449.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17 85317 873, https://doi.org/10.1029/2000JD900265.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nohydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357, https://doi.org/10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Wang, M., W. K. M. Lau, and J. Wang, 2021: Impact of Middle East dust on subseasonal-to-seasonal variability of the Asian summer monsoon. Climate Dyn., 57, 3754, https://doi.org/10.1007/s00382-021-05694-z.

    • Search Google Scholar
    • Export Citation
  • Wang, T., and Coauthors, 2021: Identifying a transport mechanism of dust aerosols over South Asia to the Tibetan Plateau: A case study. Sci. Total Environ., 758, 143714, https://doi.org/10.1016/j.scitotenv.2020.143714.

    • Search Google Scholar
    • Export Citation
  • Wu, G., T. Yao, B. Xu, L. Tian, C. Zhang, and X. Zhang, 2010: Dust concentration and flux in ice cores from the Tibetan Plateau over the past few decades. Tellus, 62B, 197206, https://doi.org/10.1111/j.1600-0889.2010.00457.x.

    • Search Google Scholar
    • Export Citation
  • Xu, C., Y. Ma, J. Ma, C. You, and H. Wang, 2020: Spring dust mass flux over the Tibetan Plateau during 2007–19 and connections with North Atlantic SST variability. J. Climate, 33, 96919703, https://doi.org/10.1175/JCLI-D-19-0481.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., G. Yu, S. Kang, S. Hou, Q. Zhang, J. Ren, and D. Qin, 2012: Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China. J. Glaciol., 58, 859865, https://doi.org/10.3189/2012JoG12J006.

    • Search Google Scholar
    • Export Citation
  • Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi, 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11 28711 295, https://doi.org/10.5194/acp-14-11287-2014.

    • Search Google Scholar
    • Export Citation
  • Xu, X., H. Wu, X. Yang, and L. Xie, 2020: Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos. Environ., 237, 117670, https://doi.org/10.1016/j.atmosenv.2020.117670.

    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and Coauthors, 2019: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Amer. Meteor. Soc., 100, 423444, https://doi.org/10.1175/BAMS-D-17-0057.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., X. Fu, B. Yu, B. Li, P. Liu, G. Zhang, L. Zhang, and X. Feng, 2021: Speciated atmospheric mercury at the Waliguan Global Atmosphere Watch station in the northeastern Tibetan Plateau: Implication of dust-related sources for particulate bound mercury. Atmos. Chem. Phys., 21, 15 84715 859, https://doi.org/10.5194/acp-21-15847-2021.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and Coauthors, 2019: Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmos. Chem. Phys., 19, 14 63714 656, https://doi.org/10.5194/acp-19-14637-2019.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., Y. Liu, T. Shao, R. Luo, and Z. Tan, 2021: A simulation study on the new transport pathways of global tropopause dust layer. Geophys. Res. Lett., 48, e2021GL096063, https://doi.org/10.1029/2021GL096063.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 739 739 222
Full Text Views 163 163 22
PDF Downloads 212 212 29