The Role of the Aleutian Low in the Relationship between Spring Pacific Meridional Mode and Following ENSO

Yuqiong Zheng aDepartment of Atmospheric Sciences, Yunnan University, Kunming, China
cYunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming, China

Search for other papers by Yuqiong Zheng in
Current site
Google Scholar
PubMed
Close
,
Shangfeng Chen bCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shangfeng Chen in
Current site
Google Scholar
PubMed
Close
,
Wen Chen aDepartment of Atmospheric Sciences, Yunnan University, Kunming, China
cYunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu dSchool of Earth Sciences, Zhejiang University, Hangzhou, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Zhibiao Wang bCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhibiao Wang in
Current site
Google Scholar
PubMed
Close
,
Bin Yu eClimate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Bin Yu in
Current site
Google Scholar
PubMed
Close
,
Peng Hu aDepartment of Atmospheric Sciences, Yunnan University, Kunming, China
cYunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming, China

Search for other papers by Peng Hu in
Current site
Google Scholar
PubMed
Close
, and
Jinling Piao bCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jinling Piao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spring Pacific meridional mode (PMM) is an important precursor of El Niño–Southern Oscillation (ENSO). However, recent studies reported that only about half of the spring PMM events were followed by ENSO events. This study examines the role of internal climate variability in modulating the impact of PMM on ENSO using 100-member ensemble simulations of the Max Planck Institute Earth System Model (MPI-ESM). The relationship between spring PMM and following winter ENSO shows a large spread among the 100 members. The variation of spring Aleutian low (AL) intensity is identified to be an important factor modulating the PMM–ENSO relation. The spring AL affects the PMM–ENSO relationship by modifying PMM-generated low-level zonal wind anomalies over the tropical western Pacific. The strengthening of the spring AL is accompanied by westerly wind anomalies over the midlatitude northwestern Pacific, leading to sea surface temperature (SST) cooling there via an enhancement of upward surface heat flux. This results in increased meridional SST gradient and leads to northerly wind anomalies over the subtropical northwestern Pacific, which turn to surface westerly wind anomalies after reaching the equatorial western Pacific due to the conservation of potential vorticity. Thus, the low-level westerly (easterly) wind anomalies over the tropical western Pacific associated with the positive (negative) spring PMM were strengthened (weakened), which further contributes to an enhanced (a weakened) PMM–ENSO relation. The mechanism for the modulation of the AL on the spring PMM–ENSO relationship is verified by a set of AGCM simulations. This study suggests that the condition of the spring AL should be considered when predicting ENSO on the basis of the PMM.

Significance Statement

Spring Pacific meridional mode (PMM) is a predictor of ENSO, but not all spring PMM events are accompanied by the occurrence of ENSO events. This study aims to explore the influence of internal climate variability on the relationship between spring PMM and following ENSO. It is revealed that the Aleutian low exerts a crucial modulation on the spring PMM–ENSO relationship. The underlying physical mechanisms for the impact of the Aleutian low on the relationship between spring PMM and ENSO are further examined. The results of this study have important implications for improving the prediction of ENSO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shangfeng Chen, chenshangfeng@mail.iap.ac.cn

Abstract

The spring Pacific meridional mode (PMM) is an important precursor of El Niño–Southern Oscillation (ENSO). However, recent studies reported that only about half of the spring PMM events were followed by ENSO events. This study examines the role of internal climate variability in modulating the impact of PMM on ENSO using 100-member ensemble simulations of the Max Planck Institute Earth System Model (MPI-ESM). The relationship between spring PMM and following winter ENSO shows a large spread among the 100 members. The variation of spring Aleutian low (AL) intensity is identified to be an important factor modulating the PMM–ENSO relation. The spring AL affects the PMM–ENSO relationship by modifying PMM-generated low-level zonal wind anomalies over the tropical western Pacific. The strengthening of the spring AL is accompanied by westerly wind anomalies over the midlatitude northwestern Pacific, leading to sea surface temperature (SST) cooling there via an enhancement of upward surface heat flux. This results in increased meridional SST gradient and leads to northerly wind anomalies over the subtropical northwestern Pacific, which turn to surface westerly wind anomalies after reaching the equatorial western Pacific due to the conservation of potential vorticity. Thus, the low-level westerly (easterly) wind anomalies over the tropical western Pacific associated with the positive (negative) spring PMM were strengthened (weakened), which further contributes to an enhanced (a weakened) PMM–ENSO relation. The mechanism for the modulation of the AL on the spring PMM–ENSO relationship is verified by a set of AGCM simulations. This study suggests that the condition of the spring AL should be considered when predicting ENSO on the basis of the PMM.

Significance Statement

Spring Pacific meridional mode (PMM) is a predictor of ENSO, but not all spring PMM events are accompanied by the occurrence of ENSO events. This study aims to explore the influence of internal climate variability on the relationship between spring PMM and following ENSO. It is revealed that the Aleutian low exerts a crucial modulation on the spring PMM–ENSO relationship. The underlying physical mechanisms for the impact of the Aleutian low on the relationship between spring PMM and ENSO are further examined. The results of this study have important implications for improving the prediction of ENSO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shangfeng Chen, chenshangfeng@mail.iap.ac.cn
Save
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific meridional mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2007: On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Climate, 20, 15931599, https://doi.org/10.1175/JCLI4075.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, https://doi.org/10.1002/grl.50200.

    • Search Google Scholar
    • Export Citation
  • Austin, P. C., and J. V. Tu, 2004: Bootstrap methods for developing predictive models. Amer. Stat., 58, 131137, https://doi.org/10.1198/0003130043277.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1983: Interaction of the monsoon and Pacific trade wind system at interannual time scales part I: The equatorial zone. Mon. Wea. Rev., 111, 756773, https://doi.org/10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., R. C. Perez, B. T. Anderson, S. M. Larson, B. S. Giese, and V. Pivotti, 2020: Testing the trade wind charging mechanism and its influence on ENSO variability. J. Climate, 33, 73917411, https://doi.org/10.1175/JCLI-D-19-0727.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and R. Wu, 2018: Impacts of winter NPO on subsequent winter ENSO: Sensitivity to the definition of NPO index. Climate Dyn., 50, 375389, https://doi.org/10.1007/s00382-017-3615-z.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and B. Yu, 2020: The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian Earth System Model: Uncertainty due to internal climate variability. Climate Dyn., 55, 25232541, https://doi.org/10.1007/s00382-020-05396-y.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, and K. Wei, 2013: Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci., 30, 17121724, https://doi.org/10.1007/s00376-013-2296-8.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, and B. Yu, 2014: Asymmetric influence of boreal spring Arctic Oscillation on subsequent ENSO. J. Geophys. Res. Atmos., 119, 11 13511 150, https://doi.org/10.1002/2014JD021831.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, and B. Yu, 2017: The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dyn., 48, 29492965, https://doi.org/10.1007/s00382-016-3243-z.

    • Search Google Scholar
    • Export Citation
  • Chen, S., B. Yu, W. Chen, and R. Wu, 2018: A review of atmosphere–ocean forcings outside the tropical Pacific on the El Niño–Southern Oscillation occurrence. Atmosphere, 9, 439, https://doi.org/10.3390/atmos9110439.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2019: Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: Uncertainty due to internal variability. Climate Dyn., 53, 63096327, https://doi.org/10.1007/s00382-019-04929-4.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, W. Chen, and B. Yu, 2020a: Recent weakening of the linkage between the spring Arctic Oscillation and the following winter El Niño–Southern Oscillation. Climate Dyn., 54, 5367, https://doi.org/10.1007/s00382-019-04988-7.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, R. Wu, B. Yu, and H.-F. Graf, 2020b: Potential impact of preceding Aleutian low variation on the El Niño–Southern Oscillation during the following winter. J. Climate, 33, 30613077, https://doi.org/10.1175/JCLI-D-19-0717.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, B. Yu, R. Wu, H.-F. Graf, and L. Chen, 2023: Enhanced impact of the Aleutian low on increasing the central Pacific ENSO in recent decades. npj Climate Atmos. Sci., 6, 29, https://doi.org/10.1038/s41612-023-00350-1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y.-h. Tseng, C. Sun, and Y. Guo, 2015: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos., 120, 2745, https://doi.org/10.1002/2014JD022221.

    • Search Google Scholar
    • Export Citation
  • Ding, R., Y.-h. Tseng, J. Li, C. Sun, F. Xie, and Z. Hou, 2019a: Relative contributions of North and South Pacific Sea surface temperature anomalies to ENSO. J. Geophys. Res. Atmos., 124, 62226237, https://doi.org/10.1029/2018JD030181.

    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y.-h. Tseng, C. Sun, Y. Li, N. Xing, and X. Li, 2019b: Linking the North American dipole to the Pacific meridional mode. J. Geophys. Res. Atmos., 124, 30203034, https://doi.org/10.1029/2018JD029692.

    • Search Google Scholar
    • Export Citation
  • Ding, R., and Coauthors, 2022: Multi-year El Niño events tied to the North Pacific Oscillation. Nat. Commun., 13, 3871, https://doi.org/10.1038/s41467-022-31516-9.

    • Search Google Scholar
    • Export Citation
  • Fan, H., B. Huang, S. Yang, and W. Dong, 2021: Influence of the Pacific meridional mode on ENSO evolution and predictability: Asymmetric modulation and ocean preconditioning. J. Climate, 34, 18811901, https://doi.org/10.1175/JCLI-D-20-0109.1.

    • Search Google Scholar
    • Export Citation
  • Fan, H., S. Yang, C. Wang, Y. Wu, and G. Zhang, 2022: Strengthening amplitude and impact of the Pacific meridional mode on ENSO in the warming climate depicted by CMIP6 models. J. Climate, 35, 51955213, https://doi.org/10.1175/JCLI-D-21-0683.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., N. J. Burls, K. T. Lawrence, and L. C. Peterson, 2015: Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci., 8, 975980, https://doi.org/10.1038/ngeo2577.

    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Lian, Y. Ding, X. Li, C. Sun, and D. Chen, 2022: Two types of the East Asian cold surge and their impacts on El Niño. Geophys. Res. Lett., 49, e2021GL096108, https://doi.org/10.1029/2021GL096108.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1915: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507521, https://doi.org/10.2307/2331838.

    • Search Google Scholar
    • Export Citation
  • Fosu, B., J. He, and S.-Y. Simon Wang, 2020: The influence of wintertime SST variability in the western North Pacific on ENSO diversity. Climate Dyn., 54, 36413654, https://doi.org/10.1007/s00382-020-05193-7.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, https://doi.org/10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, R., T. Lian, J. Feng, and D. Chen, 2023: Pacific meridional mode does not induce strong positive SST anomalies in the central equatorial Pacific. J. Climate, 36, 41134131, https://doi.org/10.1175/JCLI-D-22-0503.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R., W. Chen, B. Yan, and R. Zhang, 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci., 21, 407424, https://doi.org/10.1007/BF02915568.

    • Search Google Scholar
    • Export Citation
  • Jia, F., W. Cai, B. Gan, L. Wu, and E. Di Lorenzo, 2021: Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Climate Change, 11, 840847, https://doi.org/10.1038/s41558-021-01139-x.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and K.-J. Ha, 2019: Fidelity of CMIP5-simulated teleconnection between Atlantic multidecadal oscillation and Indian summer monsoon rainfall. Climate Dyn., 52, 41574176, https://doi.org/10.1007/s00382-018-4376-z.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Climate Atmos. Sci., 5, 88, https://doi.org/10.1038/s41612-022-00305-y.

    • Search Google Scholar
    • Export Citation
  • Larson, S., and B. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2015: Revisiting ENSO coupled instability theory and SST error growth in a fully coupled model. J. Climate, 28, 47244742, https://doi.org/10.1175/JCLI-D-14-00731.1.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., G. A. Vecchi, and P. Marchesiello, 2007: Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn., 29, 713725.

    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., M. J. McPhaden, and D. M. W. Frierson, 2017: The impact of the AMO on multidecadal ENSO variability. Geophys. Res. Lett., 44, 38773886, https://doi.org/10.1002/2017GL072524.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., J.-Y. Yu, and H.-H. Hsu, 2015: CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int. J. Climatol., 35, 23522358, https://doi.org/10.1002/joc.4130.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Lou, J., M. Newman, and A. Hoell, 2023: Multi-decadal variation of ENSO forecast skill since the late 1800s. npj Climate Atmos. Sci., 6, 89, https://doi.org/10.1038/s41612-023-00417-z.

    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, Y. Liu, S. Zhang, and R. Jacob, 2017: Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach. Climate Dyn., 48, 31393160, https://doi.org/10.1007/s00382-016-3256-7.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., J. Feng, F. Jia, and D. Hu, 2022: Interdecadal change in the relationship between the El Niño-Southern Oscillation and the North/South Pacific meridional mode. J. Geophys. Res. Oceans, 127, e2021JC018284, https://doi.org/10.1029/2021JC018284.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck institute grand ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Search Google Scholar
    • Export Citation
  • Maldonado, T., A. Rutgersson, R. Caballero, F. S. R. Pausata, E. Alfaro, and J. Amador, 2017: The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet. J. Geophys. Res. Atmos., 122, 59035916, https://doi.org/10.1002/2016JD026025.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., Y. Tachibana, and H. Shimoda, 2007: Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys. Res. Lett., 34, L22703, https://doi.org/10.1029/2007GL031220.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., J.-S. Kug, Y.-M. Yang, M.-K. Sung, S. Kim, H.-J. Kim, H.-J. Park, and S.-I. An, 2023: Distinct decadal modulation of Atlantic-Nino influence on ENSO. npj Climate Atmos. Sci., 6, 105, https://doi.org/10.1038/s41612-023-00429-9.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., C. M. Selman, S. Larson, J. C. Furtado, and E. J. Becker, 2020: The impact of the extratropics on ENSO diversity and predictability. Climate Dyn., 54, 44694484, https://doi.org/10.1007/s00382-020-05232-3.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño and La Niña phenomena. Nature, 347, 316319.

  • Piao, J., W. Chen, L. Wang, and S. Chen, 2022: Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models. Int. J. Climatol., 42, 12031219, https://doi.org/10.1002/joc.7297.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. Du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., W. Zhang, T. Lian, R. Xie, and M. Hayashi, 2022: Editorial: ENSO nonlinearity and complexity: Features, mechanisms, impacts and prediction. Front. Earth Sci., 10, 967362, https://doi.org/10.3389/feart.2022.967362.

    • Search Google Scholar
    • Export Citation
  • Richter, I., M. F. Stuecker, N. Takahashi, and N. Schneider, 2022: Disentangling the North Pacific meridional mode from tropical Pacific variability. npj Climate Atmos. Sci., 5, 94, https://doi.org/10.1038/s41612-022-00317-8.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566, https://doi.org/10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shu, Q., Y. Zhang, D. J. Amaya, S. M. Larson, Y. Kosaka, J.-C. Yang, and X. Lin, 2023: Role of ocean advections during the evolution of the Pacific meridional modes. J. Climate, 36, 43274343, https://doi.org/10.1175/JCLI-D-22-0296.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, L., S. Chen, W. Chen, and X. Chen, 2017: Distinct impacts of two types of La Niña events on Australian summer rainfall. Int. J. Climatol., 37, 25322544, https://doi.org/10.1002/joc.4863.

    • Search Google Scholar
    • Export Citation
  • Su, J., Q. Min, and R. Zhang, 2017: Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: Observational analysis and comparison. J. Climate, 30, 17051720, https://doi.org/10.1175/JCLI-D-16-0063.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14, 98115, https://doi.org/10.1175/1520-0442(2001)014%3C0098:AUOMFT%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., M. L’Heureux, and H.-H. Chia, 2012: ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys. Res. Lett., 39, L05702, https://doi.org/10.1029/2012GL050909.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., M. L’Heureux, and J.-H. Yoon, 2013: Are greenhouse gases changing ENSO precursors in the western North Pacific? J. Climate, 26, 63096322, https://doi.org/10.1175/JCLI-D-12-00360.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Xu, C., and Coauthors, 2023: Asian-Australian summer monsoons linkage to ENSO strengthened by global warming. npj Climate Atmos. Sci., 6, 8, https://doi.org/10.1038/s41612-023-00341-2.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, https://doi.org/10.1175/JCLI-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., D.-W. Yi, M.-K. Sung, and Y. H. Kim, 2018: An eastward shift of the North Pacific Oscillation after the mid-1990s and its relationship with ENSO. Geophys. Res. Lett., 45, 66546660, https://doi.org/10.1029/2018GL078671.

    • Search Google Scholar
    • Export Citation
  • Yu, B., and F. W. Zwiers, 2007: The impact of combined ENSO and PDO on the PNA climate: A 1,000-year climate modeling study. Climate Dyn., 29, 837851, https://doi.org/10.1007/s00382-007-0267-4.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 28692884, https://doi.org/10.1175/2010JCLI3171.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., M.-M. Lu, and S. T. Kim, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Chang, and L. Ji, 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505, https://doi.org/10.1175/2008JCLI2473.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., J.-S. Kug, J.-H. Park, and S.-I. An, 2020: Diversity of North Pacific meridional mode and its distinct impacts on El Niño-Southern Oscillation. Geophys. Res. Lett., 47, e2020GL088993, https://doi.org/10.1029/2020GL088993.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., M.-K. Sung, J.-H. Park, J.-J. Luo, and J.-S. Kug, 2023a: Part I observational study on a new mechanism for North Pacific Oscillation influencing the tropics. npj Climate Atmos. Sci., 6, 15, https://doi.org/10.1038/s41612-023-00336-z.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., M.-K. Sung, J.-H. Park, J.-J. Luo, and J.-S. Kug, 2023b: Part II model support on a new mechanism for North Pacific Oscillation influence on ENSO. npj Climate Atmos. Sci., 6, 16, https://doi.org/10.1038/s41612-023-00337-y.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., and Coauthors, 2022: Distinct impacts of ENSO on haze pollution in Beijing–Tianjin–Hebei region between early and late winters. J. Climate, 35, 687704, https://doi.org/10.1175/JCLI-D-21-0459.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., W. Chen, and S. Chen, 2021a: Intermodel spread in the impact of the springtime Pacific meridional mode on following-winter ENSO tied to simulation of the ITCZ in CMIP5/CMIP6. Geophys. Res. Lett., 48, e2021GL093945, https://doi.org/10.1029/2021GL093945.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., W. Chen, S. Chen, S. Yao, and C. Cheng, 2021b: Asymmetric impact of the boreal spring Pacific meridional mode on the following winter El Niño-Southern Oscillation. Int. J. Climatol., 41, 35233538, https://doi.org/10.1002/joc.7033.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., S. Chen, W. Chen, and B. Yu, 2023: A continuing increase of the impact of the spring North Pacific meridional mode on the following winter El Niño and Southern Oscillation. J. Climate, 36, 585602, https://doi.org/10.1175/JCLI-D-22-0190.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 384 384 384
Full Text Views 74 74 74
PDF Downloads 92 92 92