Decadal Thermal Variability of the Upper Southern Ocean: Zonal Asymmetry

Yuanyuan Song aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Yuanyuan Song in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7239-5756
,
Aixue Hu cClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
,
Lijing Cheng dInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijing Cheng in
Current site
Google Scholar
PubMed
Close
,
Gaël Forget eDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Gaël Forget in
Current site
Google Scholar
PubMed
Close
,
Xiaodan Chen fDepartment of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Xiaodan Chen in
Current site
Google Scholar
PubMed
Close
,
Jing Duan aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Jing Duan in
Current site
Google Scholar
PubMed
Close
, and
Fan Wang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the major sink of anthropogenic heat, the Southern Ocean has shown quasi-symmetric, deep-reaching warming since the mid-twentieth century. In comparison, the shorter-term heat storage pattern of the Southern Ocean is more complex and has notable impacts on regional climate and marine ecosystems. By analyzing observational datasets and climate model simulations, this study reveals that the Southern Ocean exhibits prominent decadal (>8 years) variability extending to ∼700-m depth and is characterized by out-of-phase changes in the Pacific and Atlantic–Indian Ocean sectors. Changes in the Pacific sector are larger in magnitude than those in the Atlantic–Indian Ocean sectors and dominate the total heat storage of the Southern Ocean on decadal time scales. Instead of heat uptake through surface heat fluxes, these asymmetric variations arise primarily from wind-driven heat redistribution. Pacemaker and preindustrial simulations of the Community Earth System Model version 1 (CESM1) suggest that these variations in Southern Ocean winds arise primarily from natural variability of the tropical Pacific, as represented by the interdecadal Pacific oscillation (IPO). Through atmospheric teleconnection, the positive phase of the IPO gives rise to higher-than-normal sea level pressure and anticyclonic wind anomalies in the 50°–70°S band of the Pacific sector. These winds lead to warming of 0–700 m by driving the convergence of warm water. The opposite processes, involving cyclonic winds and upper-layer divergence, occur in the Atlantic–Indian Ocean sector. These findings aid our understanding of the time-varying heat storage of the Southern Ocean and provide useful implications on initialized decadal climate prediction.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

As the major sink of anthropogenic heat, the Southern Ocean has shown quasi-symmetric, deep-reaching warming since the mid-twentieth century. In comparison, the shorter-term heat storage pattern of the Southern Ocean is more complex and has notable impacts on regional climate and marine ecosystems. By analyzing observational datasets and climate model simulations, this study reveals that the Southern Ocean exhibits prominent decadal (>8 years) variability extending to ∼700-m depth and is characterized by out-of-phase changes in the Pacific and Atlantic–Indian Ocean sectors. Changes in the Pacific sector are larger in magnitude than those in the Atlantic–Indian Ocean sectors and dominate the total heat storage of the Southern Ocean on decadal time scales. Instead of heat uptake through surface heat fluxes, these asymmetric variations arise primarily from wind-driven heat redistribution. Pacemaker and preindustrial simulations of the Community Earth System Model version 1 (CESM1) suggest that these variations in Southern Ocean winds arise primarily from natural variability of the tropical Pacific, as represented by the interdecadal Pacific oscillation (IPO). Through atmospheric teleconnection, the positive phase of the IPO gives rise to higher-than-normal sea level pressure and anticyclonic wind anomalies in the 50°–70°S band of the Pacific sector. These winds lead to warming of 0–700 m by driving the convergence of warm water. The opposite processes, involving cyclonic winds and upper-layer divergence, occur in the Atlantic–Indian Ocean sector. These findings aid our understanding of the time-varying heat storage of the Southern Ocean and provide useful implications on initialized decadal climate prediction.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7270 MB)
Save
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, https://doi.org/10.1029/2000JC900074.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Search Google Scholar
    • Export Citation
  • Auger, M., R. Morrow, E. Kestenare, J.-B. Sallée, and R. Cowley, 2021: Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat. Commun., 12, 514, https://doi.org/10.1038/s41467-020-20781-1.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2023: Southern Ocean warming and its climatic impacts. Sci. Bull., 68, 946960, https://doi.org/10.1016/j.scib.2023.03.049.

    • Search Google Scholar
    • Export Citation
  • Campbell, E. C., E. A. Wilson, G. W. K. Moore, S. C. Riser, C. E. Brayton, M. R. Mazloff, and L. D. Talley, 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570, 319325, https://doi.org/10.1038/s41586-019-1294-0.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., A. J. S. Meijers, M. R. Mazloff, S. T. Gille, V. M. Tamsitt, and P. R. Holland, 2019: The effects of enhanced sea ice export from the Ross Sea on recent cooling and freshening of the southeast Pacific. J. Climate, 32, 20132035, https://doi.org/10.1175/JCLI-D-18-0205.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2022: Past and future ocean warming. Nat. Rev. Earth Environ., 3, 776794, https://doi.org/10.1038/s43017-022-00345-1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2015: South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos., 120, 27732792, https://doi.org/10.1002/2014JD022940.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, J. McGregor, and R. L. Fogt, 2016: The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos., 121, 93249341, https://doi.org/10.1002/2016JD025305.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, and J. McGregor, 2017: Large-scale forcing of the Amundsen Sea low and its influence on sea ice and West Antarctic temperature. J. Climate, 30, 84058424, https://doi.org/10.1175/JCLI-D-16-0891.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Guo, and F. Lehner, 2017: The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett., 44, 79457954, https://doi.org/10.1002/2017GL074273.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, https://doi.org/10.1175/JCLI-D-12-00729.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Search Google Scholar
    • Export Citation
  • Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34, 94019423, https://doi.org/10.1175/JCLI-D-21-0248.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., P. J. Gleckler, F. W. Landerer, and K. E. Taylor, 2014: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, https://doi.org/10.1038/nclimate2389.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and G. J. Marshall, 2020: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev.: Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., J. M. Jones, and J. Renwick, 2012: Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Climate, 25, 62536270, https://doi.org/10.1175/JCLI-D-11-00474.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., D. Ferreira, and X. Liang, 2015: On the observability of turbulent transport rates by Argo: Supporting evidence from an inversion experiment. Ocean Sci., 11, 839853, https://doi.org/10.5194/os-11-839-2015.

    • Search Google Scholar
    • Export Citation
  • Frederikse, T., and Coauthors, 2020: The causes of sea-level rise since 1900. Nature, 584, 393397, https://doi.org/10.1038/s41586-020-2591-3.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295, 12751277, https://doi.org/10.1126/science.1065863.

  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and V. Zunz, 2014: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. Cryosphere, 8, 453470, https://doi.org/10.5194/tc-8-453-2014.

    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, and M. Münnich, 2020: Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv., 1, e2019AV000132, https://doi.org/10.1029/2019AV000132.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hill, S. L., T. Phillips, and A. Atkinson, 2013: Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLOS ONE, 8, e72246, https://doi.org/10.1371/journal.pone.0072246.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp.

  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954, https://doi.org/10.1175/1520-0485(2002)032<0039:TROETI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, https://doi.org/10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and T. K. Chereskin, 2009: Observations of Ekman currents in the Southern Ocean. J. Phys. Oceanogr., 39, 768779, https://doi.org/10.1175/2008JPO3943.1.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and M. H. England, 2020: Tropical Indo-Pacific teleconnections to Southern Ocean mixed layer variability. Geophys. Res. Lett., 47, e2020GL088466, https://doi.org/10.1029/2020GL088466.

    • Search Google Scholar
    • Export Citation
  • Li, S., W. Liu, K. Lyu, and X. Zhang, 2021: The effects of historical ozone changes on Southern Ocean heat uptake and storage. Climate Dyn., 57, 22692285, https://doi.org/10.1007/s00382-021-05803-y.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, https://doi.org/10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ., 2, 680698, https://doi.org/10.1038/s43017-021-00204-5.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2023: China’s recent progresses in polar climate change and its interactions with the global climate system. Adv. Atmos. Sci., 40, 14011428, https://doi.org/10.1007/s00376-023-2323-3.

    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, S.-P. Xie, and A. Fedorov, 2018: Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., M. I. Hegglin, R. Checa-Garcia, S. Li, N. P. Gillett, K. Lyu, X. Zhang, and N. C. Swart, 2022: Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming. Nat. Climate Change, 12, 365372, https://doi.org/10.1038/s41558-022-01320-w.

    • Search Google Scholar
    • Export Citation
  • Lou, J., N. J. Holbrook, and T. J. O’Kane, 2019: South Pacific decadal climate variability and potential predictability. J. Climate, 32, 60516069, https://doi.org/10.1175/JCLI-D-18-0249.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., S. E. Stammerjohn, R. A. Iannuzzi, R. C. Smith, and M. Vernet, 2008: Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep-Sea Res. II, 55, 19641987, https://doi.org/10.1016/j.dsr2.2008.04.038.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Search Google Scholar
    • Export Citation
  • Murphy, E. J., S. E. Thorpe, G. A. Tarling, J. L. Watkins, S. Fielding, and P. Underwood, 2017: Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep., 7, 6963, https://doi.org/10.1038/s41598-017-07205-9.

    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, https://doi.org/10.1126/science.aaa0940.

    • Search Google Scholar
    • Export Citation
  • Porter, S. E., E. Mosley-Thompson, L. G. Thompson, and A. B. Wilson, 2021: Reconstructing an interdecadal Pacific oscillation index from a Pacific basin–wide collection of ice core records. J. Climate, 34, 38393852, https://doi.org/10.1175/JCLI-D-20-0455.1.

    • Search Google Scholar
    • Export Citation
  • Purich, A., W. Cai, M. H. England, and T. Cowan, 2016: Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun., 7, 10409, https://doi.org/10.1038/ncomms10409.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1, 106110, https://doi.org/10.1038/ngeo102.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., H. E. Phillips, N. L. Bindoff, and S. R. Rintoul, 2015: Detecting and characterizing Ekman currents in the Southern Ocean. J. Phys. Oceanogr., 45, 12051223, https://doi.org/10.1175/JPO-D-14-0115.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. Van Loon, 1982: Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev., 110, 13751392, https://doi.org/10.1175/1520-0493(1982)110<1375:SVOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, https://doi.org/10.1357/002224039806649023.

    • Search Google Scholar
    • Export Citation
  • Rousselet, L., P. Cessi, and G. Forget, 2021: Coupling of the mid-depth and abyssal components of the global overturning circulation according to a state estimate. Sci. Adv., 7, eabf5478, https://doi.org/10.1126/sciadv.abf5478.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., 2018: Southern Ocean warming. Oceanography, 31, 5262, https://doi.org/10.5670/oceanog.2018.215.

  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and C. Deser, 2018: Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling observed and modeled trends. Climate Dyn., 50, 45994618, https://doi.org/10.1007/s00382-017-3893-5.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2018: Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219222, https://doi.org/10.1038/s41586-018-0179-y.

    • Search Google Scholar
    • Export Citation
  • Shin, Y., and S. M. Kang, 2021: How does the high-latitude thermal forcing in one hemisphere affect the other hemisphere? Geophys. Res. Lett., 48, e2021GL095870, https://doi.org/10.1029/2021GL095870.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, and M. H. England, 2013: Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett., 40, 36433648, https://doi.org/10.1002/grl.50715.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, https://doi.org/10.1175/JCLI-D-13-00615.1.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., Y. Peings, and G. Magnusdottir, 2016: Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. J. Climate, 29, 64256444, https://doi.org/10.1175/JCLI-D-15-0645.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, K. L. Smith, and R. P. Abernathey, 2015: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM). Geophys. Res. Lett., 42, 55475555, https://doi.org/10.1002/2015GL064744.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, https://doi.org/10.1038/nature07669.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415, https://doi.org/10.1038/nature18645.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., L.-L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801, https://doi.org/10.1007/s10236-010-0288-0.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and Coauthors, 2022: Future Southern Ocean warming linked to projected ENSO variability. Nat. Climate Change, 12, 649654, https://doi.org/10.1038/s41558-022-01398-2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., K. Lyu, W. Zhuang, W. Zhang, S. Makarim, and X. H. Yan, 2021: Recent shift in the warming of the southern oceans modulated by decadal climate variability. Geophys. Res. Lett., 48, e2020GL090889, https://doi.org/10.1029/2020GL090889.

    • Search Google Scholar
    • Export Citation
  • Wang, T., O. H. Otterå, Y. Gao, and H. Wang, 2012: The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Climate Dyn., 39, 29172936, https://doi.org/10.1007/s00382-012-1373-5.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. Banerjee, J. C. Fyfe, and L. M. Polvani, 2020: Contrasting recent trends in Southern Hemisphere westerlies across different ocean basins. Geophys. Res. Lett., 47, e2020GL088890, https://doi.org/10.1029/2020GL088890.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., K. Stewart, A. M. Hogg, and M. H. England, 2021: Interbasin differences in ocean ventilation in response to variations in the Southern Annular Mode. J. Geophys. Res. Oceans, 126, e2020JC016540, https://doi.org/10.1029/2020JC016540.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, https://doi.org/10.1038/nclimate2924.

    • Search Google Scholar
    • Export Citation
  • Xin, M., K. R. Clem, J. Turner, S. E. Stammerjohn, J. Zhu, W. Cai, and X. Li, 2023: West-warming East-cooling trend over Antarctica reversed since early 21st century driven by large-scale circulation variation. Environ. Res. Lett., 18, 064034, https://doi.org/10.1088/1748-9326/acd8d4.

    • Search Google Scholar
    • Export Citation
  • Yang, G., A. Atkinson, E. A. Pakhomov, S. L. Hill, and M.-F. Racault, 2022: Massive circumpolar biomass of Southern Ocean zooplankton: Implications for food web structure, carbon export, and marine spatial planning. Limnol. Oceanogr., 67, 25162530, https://doi.org/10.1002/lno.12219.

    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 27512768, https://doi.org/10.1007/s00382-014-2380-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, and F. Zeng, 2017: The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Climate Dyn., 48, 20652085, https://doi.org/10.1007/s00382-016-3190-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, and X. Yang, 2019: Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Climate Change, 9, 5965, https://doi.org/10.1038/s41558-018-0350-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2023: Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nat. Commun., 14, 1335, https://doi.org/10.1038/s41467-023-36991-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 622 622 138
Full Text Views 233 233 46
PDF Downloads 329 329 75