Increases in the Local Eddy Energetics of the Extratropical Atmosphere over the Last Four Decades

J. Michael Battalio aDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by J. Michael Battalio in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3943-5194
and
Juan M. Lora aDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by Juan M. Lora in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9925-1050
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Changes in the vertical and meridional temperature gradients of the atmosphere drive competing influences on storm-track activity. We apply local eddy energetics to the ERA5, JRA-55, MERRA-2, and NCEP-2 reanalyses during 1980–2020 to determine the locations, magnitudes, and trends of the energy transfer mechanisms for synoptic-scale eddies. Eddy kinetic energy (EKE) increases more rapidly in the Southern Hemisphere at all altitudes and seasons, with larger increases during austral winter and spring. In the Northern Hemisphere, increases occur within the Atlantic and Pacific storm tracks at pressures below 300 hPa but only during boreal winter and spring and confined within a narrow zonal band; EKE decreases during boreal summer and fall. Most EKE changes correspond with trends in baroclinic energy conversion upstream of storm tracks and appear to align with increases in the growth rate of the most unstable baroclinic mode. Barotropic energy conversion of EKE to the mean flow becomes locally more intense downstream of the storm tracks. Conversion of EKE to long-period eddies plays a minor role averaged over a hemisphere but can be important locally. The primary strengthening pathway for removal of EKE is a combination of surface friction and viscous dissipation. The increased baroclinic conversion in the Southern Hemisphere appears related to upper-level tropical temperature increases. In the Northern Hemisphere, increased baroclinic conversion is enabled by a combination of increased vertical heat fluxes and a region of temperature increases within 30°–60°N.

Significance Statement

Traveling atmospheric disturbances arrange into storm tracks that determine the weather in the midlatitudes. Storm tracks are evolving in time due to anthropogenic warming; however, the location and strength of temperature changes compete for influence on the storm tracks. A framework to quantify the mechanisms of generation of kinetic energy contained by eddies pinpoints the extent of storm-track evolution. Storm tracks generally strengthen across the planet but have increased the most in the Southern Hemisphere. Strengthening in the Northern Hemisphere is limited to the winter in a narrow latitudinal band, because of warming in the Arctic that reduces the primary instability that drives eddies. The locations of northern warming and storm-track strengthening suggest a role for tropical dynamics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Michael Battalio, michael@battalio.com

Abstract

Changes in the vertical and meridional temperature gradients of the atmosphere drive competing influences on storm-track activity. We apply local eddy energetics to the ERA5, JRA-55, MERRA-2, and NCEP-2 reanalyses during 1980–2020 to determine the locations, magnitudes, and trends of the energy transfer mechanisms for synoptic-scale eddies. Eddy kinetic energy (EKE) increases more rapidly in the Southern Hemisphere at all altitudes and seasons, with larger increases during austral winter and spring. In the Northern Hemisphere, increases occur within the Atlantic and Pacific storm tracks at pressures below 300 hPa but only during boreal winter and spring and confined within a narrow zonal band; EKE decreases during boreal summer and fall. Most EKE changes correspond with trends in baroclinic energy conversion upstream of storm tracks and appear to align with increases in the growth rate of the most unstable baroclinic mode. Barotropic energy conversion of EKE to the mean flow becomes locally more intense downstream of the storm tracks. Conversion of EKE to long-period eddies plays a minor role averaged over a hemisphere but can be important locally. The primary strengthening pathway for removal of EKE is a combination of surface friction and viscous dissipation. The increased baroclinic conversion in the Southern Hemisphere appears related to upper-level tropical temperature increases. In the Northern Hemisphere, increased baroclinic conversion is enabled by a combination of increased vertical heat fluxes and a region of temperature increases within 30°–60°N.

Significance Statement

Traveling atmospheric disturbances arrange into storm tracks that determine the weather in the midlatitudes. Storm tracks are evolving in time due to anthropogenic warming; however, the location and strength of temperature changes compete for influence on the storm tracks. A framework to quantify the mechanisms of generation of kinetic energy contained by eddies pinpoints the extent of storm-track evolution. Storm tracks generally strengthen across the planet but have increased the most in the Southern Hemisphere. Strengthening in the Northern Hemisphere is limited to the winter in a narrow latitudinal band, because of warming in the Arctic that reduces the primary instability that drives eddies. The locations of northern warming and storm-track strengthening suggest a role for tropical dynamics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Michael Battalio, michael@battalio.com

Supplementary Materials

    • Supplemental Materials (PDF 74.420 MB)
Save
  • Ahmadi-Givi, F., M. Nasr-Esfahany, and A. R. Mohebalhojeh, 2014: Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track. Quart. J. Roy. Meteor. Soc., 140, 754765, https://doi.org/10.1002/qj.2171.

    • Search Google Scholar
    • Export Citation
  • Banerjee, A., J. C. Fyfe, L. M. Polvani, D. Waugh, and K.-L. Chang, 2020: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544548, https://doi.org/10.1038/s41586-020-2120-4.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. W. J. Thompson, 2014: Comparing the roles of barotropic versus baroclinic feedbacks in the atmosphere’s response to mechanical forcing. J. Atmos. Sci., 71, 177194, https://doi.org/10.1175/JAS-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., N. W. Barnes, and L. M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852867, https://doi.org/10.1175/JCLI-D-13-00246.1.

    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., 2022: Transient eddy kinetic energetics on mars in three reanalysis datasets. J. Atmos. Sci., 79, 361382, https://doi.org/10.1175/JAS-D-21-0038.1.

    • Search Google Scholar
    • Export Citation
  • Battalio, M., and H. Wang, 2020: Eddy evolution during large dust storms. Icarus, 338, 113507, https://doi.org/10.1016/j.icarus.2019.113507.

    • Search Google Scholar
    • Export Citation
  • Battalio, M., I. Szunyogh, and M. Lemmon, 2016: Energetics of the Martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset. Icarus, 276, 120, https://doi.org/10.1016/j.icarus.2016.04.028.

    • Search Google Scholar
    • Export Citation
  • Battalio, M., I. Szunyogh, and M. Lemmon, 2018: Wave energetics of the Southern Hemisphere of Mars. Icarus, 309, 220240, https://doi.org/10.1016/j.icarus.2018.03.015.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47, 14171442, https://doi.org/10.1175/1520-0469(1990)047<1417:OTBDOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. M. Van Den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and Coauthors, 2019: The future of midlatitude cyclones. Curr. Climate Change Rep., 5, 407420, https://doi.org/10.1007/s40641-019-00149-4.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2000: Wave packets and life cycles of troughs in the upper troposphere: Examples from the Southern Hemisphere summer season of 1984/85. Mon. Wea. Rev., 128, 2550, https://doi.org/10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: The structure of baroclinic wave packets. J. Atmos. Sci., 58, 16941713, https://doi.org/10.1175/1520-0469(2001)058<1694:TSOBWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and A. M. W. Yau, 2016: Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dyn., 47, 14351454, https://doi.org/10.1007/s00382-015-2911-8.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., 2017: Atmospheric energy transfer response to global warming. Quart. J. Roy. Meteor. Soc., 143, 22962308, https://doi.org/10.1002/qj.3086.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., 2022: The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun., 13, 1730, https://doi.org/10.1038/s41467-022-29392-4.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2020: Linking midlatitudes eddy heat flux trends and polar amplification. npj Climate Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., Y. Ming, and J. Yuval, 2022a: The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Climate Change, 12, 553557, https://doi.org/10.1038/s41558-022-01368-8.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, C. Orbe, L. T. Sentman, and L. M. Polvani, 2022b: The future intensification of the North Atlantic winter storm track: The key role of dynamic ocean coupling. J. Climate, 35, 24072421, https://doi.org/10.1175/JCLI-D-21-0407.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Search Google Scholar
    • Export Citation
  • Decker, S. G., and J. E. Martin, 2005: A local energetics analysis of the life cycle differences between consecutive, explosively deepening, continental cyclones. Mon. Wea. Rev., 133, 295316, https://doi.org/10.1175/MWR-2860.1.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, https://doi.org/10.1175/2010JCLI3676.1.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Franzke, C. L. E., and N. Harnik, 2023: Long-term trends of the atmospheric circulation and moist static energy budget in the JRA-55 reanalysis. J. Climate, 36, 29592984, https://doi.org/10.1175/JCLI-D-21-0724.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, https://doi.org/10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 10491062, https://doi.org/10.1175/2007JAS2373.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 11791179, https://doi.org/10.1126/science.1125566.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gertler, C. G., and P. A. O’Gorman, 2019: Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Proc. Natl. Acad. Sci. USA, 116, 41054110, https://doi.org/10.1073/pnas.1812312116.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. LaCasce, 2012: Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Climate, 25, 18541870, https://doi.org/10.1175/JCLI-D-11-00174.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and S. M. Davis, 2020: Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys., 20, 52495268, https://doi.org/10.5194/acp-20-5249-2020.

    • Search Google Scholar
    • Export Citation
  • Gulev, S., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 287–422, https://doi.org/10.1017/9781009157896.004.

  • Ha, Y., Z. Zhong, Y. Zhu, and Y. Hu, 2013: Contributions of barotropic energy conversion to northwest Pacific tropical cyclone activity during ENSO. Mon. Wea. Rev., 141, 13371346, https://doi.org/10.1175/MWR-D-12-00084.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2015: Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Climate Dyn., 45, 28472860, https://doi.org/10.1007/s00382-015-2510-8.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., P. Cook, L. C. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701.

    • Search Google Scholar
    • Export Citation
  • Hernández-Deckers, D., and J.-S. von Storch, 2012: Impact of the warming pattern on global energetics. J. Climate, 25, 52235240, https://doi.org/10.1175/JCLI-D-11-00468.1.

    • Search Google Scholar
    • Export Citation
  • Herrera, M. A., I. Szunyogh, and J. Tribbia, 2016: Forecast uncertainty dynamics in the THORPEX Interactive Grand Global Ensemble (TIGGE). Mon. Wea. Rev., 144, 27392766, https://doi.org/10.1175/MWR-D-15-0293.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., 1978: A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15, 125145.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., Y. Tawaye, and S. Feng, 2004: Variations of the Northern Hemisphere atmospheric energetics: 1948–2000. J. Climate, 17, 19751986, https://doi.org/10.1175/1520-0442(2004)017<1975:VOTNHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., M. Inatsu, and M. Kimoto, 2012: Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Climate, 25, 72827296, https://doi.org/10.1175/JCLI-D-11-00373.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, T., Y. Deng, and W. Li, 2013: Local kinetic energy budget of high-frequency and intermediate-frequency eddies: Winter climatology and interannual variability. Climate Dyn., 41, 961976, https://doi.org/10.1007/s00382-013-1684-1.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 30503057, https://doi.org/10.1175/1520-0469(2000)057%3C3050:TSSOTM%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kanno, Y., and T. Iwasaki, 2022: Future changes of atmospheric energy cycle in CMIP5 climate models. J. Geophys. Res. Atmos., 127, e2021JD036380, https://doi.org/10.1029/2021JD036380.

    • Search Google Scholar
    • Export Citation
  • Kaviani, M., F. Ahmadi-Givi, A. R. Mohebalhojeh, and D. Yazgi, 2022: An assessment of radiative impacts of CO2 on baroclinic instability using idealized life cycles. Quart. J. Roy. Meteor. Soc., 148, 891906, https://doi.org/10.1002/qj.4237.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kim, W. M., and Y.-S. Choi, 2017: Long-term change of the atmospheric energy cycles and weather disturbances. Climate Dyn., 49, 36053617, https://doi.org/10.1007/s00382-017-3533-0.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and M.-K. Kim, 2013: Examination of the global Lorenz energy cycle using MERRA and NCEP-reanalysis 2. Climate Dyn., 40, 14991513, https://doi.org/10.1007/s00382-012-1358-4.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Lee, S. H., P. D. Williams, and T. H. A. Frame, 2019: Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature, 572, 639642, https://doi.org/10.1038/s41586-019-1465-z.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313327, https://doi.org/10.1007/s00382-011-1188-9.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, https://doi.org/10.1029/2007GL029985.

    • Search Google Scholar
    • Export Citation
  • Li, L., X. Jiang, M. T. Chahine, J. Wang, and Y. L. Yung, 2011: The mechanical energies of the global atmosphere in El Niño and La Niña years. J. Atmos. Sci., 68, 30723078, https://doi.org/10.1175/JAS-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2022: The role of temperature gradients versus static stability on the zonal wind and eddy kinetic energy response to thermal perturbations. J. Climate, 35, 70417056, https://doi.org/10.1175/JCLI-D-22-0139.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Ma, Q., V. Lembo, and C. L. E. Franzke, 2021: The Lorenz energy cycle: Trends and the impact of modes of climate variability. Tellus, 73A, 1900033, https://doi.org/10.1080/16000870.2021.1900033.

    • Search Google Scholar
    • Export Citation
  • Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 32893311, https://doi.org/10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M., and Y. Deng, 2007: Diagnostic and dynamical analyses of two outstanding aspects of storm tracks. Dyn. Atmos. Oceans, 43, 8099, https://doi.org/10.1016/j.dynatmoce.2006.06.004.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032%3C0003:TEODTC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marques, C. A. F., A. Rocha, J. Corte-Real, J. M. Castanheira, J. Ferreira, and P. Melo-Goncalves, 2008: Global atmospheric energetics from NCEP–Reanalysis 2 and ECMWF–ERA40 reanalysis. Int. J. Climatol., 29, 159174, https://doi.org/10.1002/joc.1704.

    • Search Google Scholar
    • Export Citation
  • Marques, C. A. F., A. Rocha, and J. Corte-Real, 2010: Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn. Atmos. Oceans, 50, 375399, https://doi.org/10.1016/j.dynatmoce.2010.03.003.

    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2017: Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci., 74, 93110, https://doi.org/10.1175/JAS-D-15-0267.1.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., and J. E. Martin, 2002: Surface cyclolysis in the North Pacific Ocean. Part III: Composite local energetics of tropospheric-deep cyclone decay associated with rapid surface cyclolysis. Mon. Wea. Rev., 130, 25072529, https://doi.org/10.1175/1520-0493(2002)130%3C2507:SCITNP%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760768, https://doi.org/10.1175/2010JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Novak, L., and R. Tailleux, 2018: On the local view of atmospheric available potential energy. J. Atmos. Sci., 75, 18911907, https://doi.org/10.1175/JAS-D-17-0330.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Search Google Scholar
    • Export Citation
  • Okajima, S., H. Nakamura, and Y. Kaspi, 2022: Energetics of transient eddies related to the midwinter minimum of the North Pacific storm-track activity. J. Climate, 35, 11371156, https://doi.org/10.1175/JCLI-D-21-0123.1.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092%3C0483:OEOTAE%3E2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 27052719, https://doi.org/10.1029/JC079i018p02705.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1976: On the variability of the atmospheric energy cycle within a 5-year period. J. Geophys. Res., 81, 36433659, https://doi.org/10.1029/JC081i021p03643.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 25772602, https://doi.org/10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., L. Li, X. Jiang, G. Li, W. Zhang, X. Wang, and A. P. Ingersoll, 2017: Earth’s changing global atmospheric energy cycle in response to climate change. Nat. Commun., 8, 14367, https://doi.org/10.1038/ncomms14367.

    • Search Google Scholar
    • Export Citation
  • Park, H.-J., and K.-Y. Kim, 2021: Influence of Northern Hemispheric winter warming on the Pacific storm track. Climate Dyn., 56, 14871506, https://doi.org/10.1007/s00382-020-05544-4.

    • Search Google Scholar
    • Export Citation
  • Park, M., and S. Lee, 2022: Which is the more effective driver of the poleward eddy heat flux variability: Zonal gradient of tropical convective heating or equator-to-pole temperature gradient? J. Atmos. Sci., 79, 17131725, https://doi.org/10.1175/JAS-D-21-0262.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 724 pp., https://doi.org/10.1007/978-1-4612-4650-3.

  • Peixóto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, https://doi.org/10.1029/JC079i015p02149.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, and A. Joly, 2014: Eddy kinetic energy redistribution within idealized extratropical cyclones using a two-layer quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 141, 207223, https://doi.org/10.1002/qj.2350.

    • Search Google Scholar
    • Export Citation
  • Sang, X., X.-Q. Yang, L. Tao, J. Fang, and X. Sun, 2021: Evaluation of synoptic eddy activities and their feedback onto the midlatitude jet in five atmospheric reanalyses with coarse versus fine model resolutions. Climate Dyn., 58, 13631381, https://doi.org/10.1007/s00382-021-05965-9.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., and G. Rivière, 2019: On the efficiency of baroclinic eddy growth and how it reduces the North Pacific storm-track intensity in midwinter. J. Climate, 32, 83738398, https://doi.org/10.1175/JCLI-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., L. Papritz, and G. Rivière, 2022: Storm track response to uniform global warming downstream of an idealized sea surface temperature front. Wea. Climate Dyn., 3, 601623, https://doi.org/10.5194/wcd-3-601-2022.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and O. Miyawaki, 2024: Fast upper-level jet stream winds get faster under climate change. Nat. Climate Change, 14, 6167, https://doi.org/10.1038/s41558-023-01884-1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., O. Miyawaki, and A. Donohoe, 2022: Stormier Southern Hemisphere induced by topography and ocean circulation. Proc. Natl. Acad. Sci. USA, 119, e2123512119, https://doi.org/10.1073/pnas.2123512119.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Stendel, M., J. Francis, R. White, P. D. Williams, and T. Woollings, 2021: The jet stream and climate change. Climate Change, 3rd ed. T. M. Letcher, Ed., Elsevier, 327–357.

  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571, https://doi.org/10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

  • Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908913, https://doi.org/10.1038/s41561-017-0001-8.

    • Search Google Scholar
    • Export Citation
  • Tan, Z., O. Lachmy, and T. A. Shaw, 2019: The sensitivity of the jet stream response to climate change to radiative assumptions. J. Adv. Model. Earth Syst., 11, 934956, https://doi.org/10.1029/2018MS001492.

    • Search Google Scholar
    • Export Citation
  • Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 65976616, https://doi.org/10.1175/JCLI-D-15-0549.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, https://doi.org/10.1007/s00704-008-0083-8.

    • Search Google Scholar
    • Export Citation
  • Veiga, J. A. P., and T. Ambrizzi, 2013: A global and hemispherical analysis of the Lorenz energetics based on the representative concentration pathways used in CMIP5. Adv. Meteor., 2013, 485047, https://doi.org/10.1155/2013/485047.

    • Search Google Scholar