A Comparison of the Impacts of Two Consecutive Double-Peaked La Niña Events on Antarctic Sea Ice in Austral Spring

Chao Zhang aDepartment of Atmospheric Science and Science and Technology Innovation Center, School of Environmental Studies, China University of Geosciences, Wuhan, China
eGuangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou, China

Search for other papers by Chao Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1701-775X
,
Shuanglin Li aDepartment of Atmospheric Science and Science and Technology Innovation Center, School of Environmental Studies, China University of Geosciences, Wuhan, China
bInstitute of Atmospheric Physics, Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
dCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Shuanglin Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4891-8561
, and
Zhe Han cCAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhe Han in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Among nine La Niña events since 1980, there are seven double-peaked La Niña events that typically persist for 2 years and peak twice in the two consecutive boreal winters. In the study, the individual impacts of the first and second peak episodes of such La Niña on the Antarctic sea ice in austral spring (September–November) were compared. The results suggest a difference. The first episode induces a tripolar distribution of sea ice concentration (SIC) with a negative anomaly in the Bellingshausen Sea sandwiched with positive anomalies in the Ross Sea and the northeastern Weddell Sea. The second causes an SIC reduction in most parts of the Southern Ocean except for the eastern Ross–western Amundsen Seas where an increase is observed. Mechanistically, the first episode forces one single Rossby wave train to propagate southeastward, causing a strong cyclone anomaly over the eastern Ross–Amundsen–Bellingshausen Seas along with a weak anticyclone over the Weddell Sea. In comparison, the second La Niña excites two branches of Rossby wave trains emanating from the southeastern tropical Indian Ocean and the central equatorial Pacific, respectively, which induce three anomalous anticyclones and two anomalous cyclones over the Southern Ocean. These different atmospheric circulation anomalies shape their different sea ice distributions between the two La Niña episodes through both dynamic and thermodynamic processes. The modeling results from CAM5 verify these differences.

Significance Statement

Under global warming, the double-peaked La Niña occurs more frequently. The first and second La Niña episodes in such double-peaked La Niña are distinct from each other not only in their onset and developing mechanisms but also in their climate impacts. Based on observational analyses and model experiments, the study investigated the distinctive impacts of the first and second episodes on the austral spring Antarctic sea ice. The results reveal that the first episode excites one single southeastward-propagated Rossby wave train, while the second episode forces two branches of Rossby wave trains. These different atmospheric responses in the Southern Hemisphere shape the distinct sea ice distributions both dynamically and thermodynamically. The study also indicates the diversity of tropical–Antarctic teleconnections.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuanglin Li, shuanglin.li@mail.iap.ac.cn

Abstract

Among nine La Niña events since 1980, there are seven double-peaked La Niña events that typically persist for 2 years and peak twice in the two consecutive boreal winters. In the study, the individual impacts of the first and second peak episodes of such La Niña on the Antarctic sea ice in austral spring (September–November) were compared. The results suggest a difference. The first episode induces a tripolar distribution of sea ice concentration (SIC) with a negative anomaly in the Bellingshausen Sea sandwiched with positive anomalies in the Ross Sea and the northeastern Weddell Sea. The second causes an SIC reduction in most parts of the Southern Ocean except for the eastern Ross–western Amundsen Seas where an increase is observed. Mechanistically, the first episode forces one single Rossby wave train to propagate southeastward, causing a strong cyclone anomaly over the eastern Ross–Amundsen–Bellingshausen Seas along with a weak anticyclone over the Weddell Sea. In comparison, the second La Niña excites two branches of Rossby wave trains emanating from the southeastern tropical Indian Ocean and the central equatorial Pacific, respectively, which induce three anomalous anticyclones and two anomalous cyclones over the Southern Ocean. These different atmospheric circulation anomalies shape their different sea ice distributions between the two La Niña episodes through both dynamic and thermodynamic processes. The modeling results from CAM5 verify these differences.

Significance Statement

Under global warming, the double-peaked La Niña occurs more frequently. The first and second La Niña episodes in such double-peaked La Niña are distinct from each other not only in their onset and developing mechanisms but also in their climate impacts. Based on observational analyses and model experiments, the study investigated the distinctive impacts of the first and second episodes on the austral spring Antarctic sea ice. The results reveal that the first episode excites one single southeastward-propagated Rossby wave train, while the second episode forces two branches of Rossby wave trains. These different atmospheric responses in the Southern Hemisphere shape the distinct sea ice distributions both dynamically and thermodynamically. The study also indicates the diversity of tropical–Antarctic teleconnections.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuanglin Li, shuanglin.li@mail.iap.ac.cn
Save
  • Ahlgrimm, M., and R. Forbes, 2012: The impact of low clouds on surface shortwave radiation in the ECMWF model. Mon. Wea. Rev., 140, 37833794, https://doi.org/10.1175/MWR-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Li, and C. Zhang, 2023: Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring. Atmos. Oceanic Sci. Lett., 16, 100387, https://doi.org/10.1016/j.aosl.2023.100387.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, https://doi.org/10.1175/JCLI-D-13-00045.1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, J. McGregor, and R. L. Fogt, 2016: The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos., 121, 93249341, https://doi.org/10.1002/2016JD025305.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, and J. McGregor, 2017: Large-scale forcing of the Amundsen Sea low and its influence on sea ice and West Antarctic temperature. J. Climate, 30, 84058424, https://doi.org/10.1175/JCLI-D-16-0891.1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., B. R. Lintner, A. J. Broccoli, and J. R. Miller, 2019: Role of the South Pacific convergence zone in West Antarctic decadal climate variability. Geophys. Res. Lett., 46, 69006909, https://doi.org/10.1029/2019GL082108.

    • Search Google Scholar
    • Export Citation
  • Deb, P., M. K. Dash, S. P. Dey, and P. C. Pandey, 2017: Non-annular response of sea ice cover in the Indian sector of the Antarctic during extreme SAM events. Int. J. Climatol., 37, 648656, https://doi.org/10.1002/joc.4730.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and Coauthors, 2017: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 62411 635, https://doi.org/10.1002/2017GL074904.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the Southern Annular Mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Eayrs, C., X. Li, M. N. Raphael, and D. M. Holland, 2021: Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci., 14, 460464, https://doi.org/10.1038/s41561-021-00768-3.

    • Search Google Scholar
    • Export Citation
  • Feng, J., Y. Zhang, Q. Cheng, X. S. Liang, and T. Jiang, 2019: Analysis of summer Antarctic sea ice anomalies associated with the spring Indian Ocean dipole. Global Planet. Change, 181, 102982, https://doi.org/10.1016/j.gloplacha.2019.102982.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and J. O. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Sci. Bull., 30, 13601364.

  • Geng, T., F. Jia, W. Cai, L. Wu, B. Gan, Z. Jing, S. Li, and M. J. McPhaden, 2023: Increased occurrences of consecutive La Niña events under global warming. Nature, 619, 774781, https://doi.org/10.1038/s41586-023-06236-9.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, https://doi.org/10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., Z. Fu, H. Murakami, J.-Y. Lee, C. Yoo, N. C. Johnson, C.-H. Chang, and Y. Liu, 2021: East Antarctic cooling induced by decadal changes in Madden-Julian oscillation during austral summer. Sci. Adv., 7, eabf9903, https://doi.org/10.1126/sciadv.abf9903.

    • Search Google Scholar
    • Export Citation
  • Hu, X., S. A. Sejas, M. Cai, Z. Li, and S. Yang, 2019: Atmospheric dynamics footprint on the January 2016 ice sheet melting in West Antarctica. Geophys. Res. Lett., 46, 28292835, https://doi.org/10.1029/2018GL081374.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Search Google Scholar
    • Export Citation
  • Huang, S., J. Qin, S. Li, Z. Yuan, and Y. Mbululo, 2022: Spatiotemporal variability of the southern second mode and its influence on June precipitation in Southern China. J. Geophys. Res. Atmos., 127, e2022JD036762, https://doi.org/10.1029/2022JD036762.

    • Search Google Scholar
    • Export Citation
  • Iwakiri, T., and M. Watanabe, 2020: Multiyear La Niña impact on summer temperature over Japan. J. Meteor. Soc. Japan, 98, 12451260, https://doi.org/10.2151/jmsj.2020-064.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, https://doi.org/10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I. Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II. A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., D. Kang, M.-I. Lee, E. K. Jin, J.-S. Kug, and W. S. Lee, 2023: Remote influences of ENSO and IOD on the interannual variability of the West Antarctic Sea Ice. J. Geophys. Res. Atmos., 128, e2022JD038313, https://doi.org/10.1029/2022JD038313.

    • Search Google Scholar
    • Export Citation
  • Kusahara, K., P. Reid, G. D. Williams, R. Massom, and H. Hasumi, 2018: An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environ. Res. Lett., 13, 084020, https://doi.org/10.1088/1748-9326/aad624.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-J., and K.-H. Seo, 2019: Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep., 9, 10761, https://doi.org/10.1038/s41598-019-47150-3.

    • Search Google Scholar
    • Export Citation
  • Li, S., W. A. Robinson, M. P. Hoerling, and K. M. Weickmann, 2007: Dynamics of the extratropical response to a tropical Atlantic SST anomaly. J. Climate, 20, 560574, https://doi.org/10.1175/JCLI4014.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2015: Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in austral winter. J. Climate, 28, 81518164, https://doi.org/10.1175/JCLI-D-15-0113.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Zhu, and D. Chen, 2023: Lowest Antarctic sea ice record broken for the second year in a row. Ocean-Land-Atmos. Res., 2, 0007, https://doi.org/10.34133/olar.0007.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp.

  • Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799.

    • Search Google Scholar
    • Export Citation
  • Nuncio, M., and X. Yuan, 2015: The influence of the Indian Ocean dipole on Antarctic sea ice. J. Climate, 28, 26822690, https://doi.org/10.1175/JCLI-D-14-00390.1.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, https://doi.org/10.1175/2008JCLI2334.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., P. DiNezio, and C. Deser, 2017: Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett., 44, 11 61411 623, https://doi.org/10.1002/2017GL075034.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., S.-I. An, J.-S. Kug, Y.-M. Yang, T. Li, and H.-S. Jo, 2021: Mid-latitude leading double-dip La Niña. Int. J. Climatol., 41, E1353E1370, https://doi.org/10.1002/joc.6772.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, https://doi.org/10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., H. A. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Climate Dyn., 38, 5773, https://doi.org/10.1007/s00382-011-1044-y.

    • Search Google Scholar
    • Export Citation
  • Purich, A., and Coauthors, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Search Google Scholar
    • Export Citation
  • Raj Deepak, S. N., J. S. Chowdary, A. R. Dandi, G. Srinivas, A. Parekh, C. Gnanaseelan, and R. K. Yadav, 2019: Impact of multiyear La Niña events on the South and East Asian summer monsoon rainfall in observations and CMIP5 models. Climate Dyn., 52, 69897011, https://doi.org/10.1007/s00382-018-4561-0.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2007: The influence of atmospheric zonal wave three on Antarctic sea ice variability. J. Geophys. Res., 112, D12112, https://doi.org/10.1029/2006JD007852.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and M. S. Handcock, 2022: A new record minimum for Antarctic sea ice. Nat. Rev. Earth Environ., 3, 215216, https://doi.org/10.1038/s43017-022-00281-0.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sledd, A., and T. S. L’Ecuyer, 2021: Emerging trends in Arctic solar absorption. Geophys. Res. Lett., 48, e2021GL095813, https://doi.org/10.1029/2021GL095813.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, H.-J., E. Choi, G.-H. Lim, Y. H. Kim, J.-S. Kug, and S.-W. Yeh, 2011: The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. J. Geophys. Res., 116, D21113, https://doi.org/10.1029/2011JD015645.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., C. M. Bitz, and K. C. Armour, 2017: Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett., 44, 90089019, https://doi.org/10.1002/2017GL074691.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, X., S. Li, and S. Liess, 2022: The asymmetric connection of SST in the Tasman Sea with respect to the opposite phases of ENSO in austral summer. Adv. Atmos. Sci., 39, 18971913, https://doi.org/10.1007/s00376-022-1421-y.

    • Search Google Scholar
    • Export Citation
  • Sun, X., S. Li, and D. Yang, 2023: Air–sea coupling over the Tasman Sea intensifies the ENSO-related South Pacific atmospheric teleconnection. Adv. Clim. Change Res., 14, 363371, https://doi.org/10.1016/j.accre.2023.06.001.

    • Search Google Scholar
    • Export Citation
  • Supari, F. Tangang, E. Salimun, E. Aldrian, A. Sopaheluwakan, and L. Juneng, 2018: ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dyn., 51, 25592580, https://doi.org/10.1007/s00382-017-4028-8.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño-southern oscillation and Antarctica. Int. J. Climatol., 24 (1), 131, https://doi.org/10.1002/joc.965.

  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Luo, Q. Yang, J. Liu, L. Yu, Q. Shi, and B. Han, 2022: An unprecedented record low Antarctic sea-ice extent during austral summer 2022. Adv. Atmos. Sci., 39, 15911597, https://doi.org/10.1007/s00376-022-2087-1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Turner, Y. Wu, and C. Liu, 2019: Rapid decline of total Antarctic sea ice extent during 2014–16 controlled by wind-driven sea ice drift. J. Climate, 32, 53815395, https://doi.org/10.1175/JCLI-D-18-0635.1.

    • Search Google Scholar
    • Export Citation
  • Wassermann, S., C. Schmitt, C. Kottmeier, and I. Simmonds, 2006: Coincident vortices in Antarctic wind fields and sea ice motion. Geophys. Res. Lett., 33, L15810, https://doi.org/10.1029/2006GL026005.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. H. Bromwich, K. M. Hines, and S.-H. Wang, 2014: El Niño flavors and their simulated impacts on atmospheric circulation in the high southern latitudes. J. Climate, 27, 89348955, https://doi.org/10.1175/JCLI-D-14-00296.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. L. Kinter III, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, https://doi.org/10.1029/2009JD012579.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H. Paek, E. S. Saltzman, and T. Lee, 2015: The early 1990s change in ENSO–PSA–SAM relationships and its impact on Southern Hemisphere climate. J. Climate, 28, 93939408, https://doi.org/10.1175/JCLI-D-15-0335.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. A. Winkler, M. Zhou, D. H. Lenschow, B. Li, X. Wang, and Q. Yang, 2017: Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep., 7, 45804, https://doi.org/10.1038/srep45804.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, T. Vihma, C. Sui, and B. Sun, 2022: The impact of the Indian Ocean Basin Mode on Antarctic sea ice concentration in interannual time scales. Geophys. Res. Lett., 49, e2022GL097745, https://doi.org/10.1029/2022GL097745.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, https://doi.org/10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717, https://doi.org/10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. Li, 2023: Causes of the record-low Antarctic sea-ice in austral summer 2022. Atmos. Oceanic Sci. Lett., 16, 100353, https://doi.org/10.1016/j.aosl.2023.100353.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Li, F. Luo, and Z. Huang, 2019a: The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. Int. J. Climatol., 39, 48534868, https://doi.org/10.1002/joc.6114.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., J.-J. Luo, and S. Li, 2019b: Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophys. Res. Lett., 46, 34353445, https://doi.org/10.1029/2019GL082280.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., T. Li, and S. Li, 2021: Impacts of CP and EP El Niño events on the Antarctic sea ice in austral spring. J. Climate, 34, 93279348, https://doi.org/10.1175/JCLI-D-21-0002.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Li, F. Kucharski, R. Ding, and T. Liu, 2018: Dominant SST mode in the Southern Hemisphere extratropics and Its influence on atmospheric circulation. Adv. Atmos. Sci., 35, 881895, https://doi.org/10.1007/s00376-017-7162-7.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and J.-Y. Yu, 2022: A shifting tripolar pattern of Antarctic sea ice concentration anomalies during multi-year La Niña events. Geophys. Res. Lett., 49, e2022GL101217, https://doi.org/10.1029/2022GL101217.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 654 654 82
Full Text Views 136 136 28
PDF Downloads 179 179 34