Simulated Warming Hole in Paleo-Pacific Oceans

Mengyu Wei aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Mengyu Wei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0588-6600
,
Jun Yang aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jun Yang in
Current site
Google Scholar
PubMed
Close
,
Yongyun Hu aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yongyun Hu in
Current site
Google Scholar
PubMed
Close
,
Yonggang Liu aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yonggang Liu in
Current site
Google Scholar
PubMed
Close
,
Shineng Hu bDivision of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by Shineng Hu in
Current site
Google Scholar
PubMed
Close
,
Xiang Li aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Xiang Li in
Current site
Google Scholar
PubMed
Close
,
Jiawenjing Lan aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jiawenjing Lan in
Current site
Google Scholar
PubMed
Close
,
Jiaqi Guo aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jiaqi Guo in
Current site
Google Scholar
PubMed
Close
,
Shuai Yuan aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Shuai Yuan in
Current site
Google Scholar
PubMed
Close
, and
Ji Nie aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Ji Nie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both observations and simulations show that under global warming, there exists a warming deficit in the North Atlantic, known as the North Atlantic warming hole (NAWH). Here, we show that a similar warming hole occurs in the subpolar Pacific Ocean of paleoclimate simulations. As the solar constant is increased, the local surface becomes substantially cooler rather than warmer in the subpolar paleo-Pacific Ocean under the land–sea configurations of 70, 90, and 150 million years ago (Ma). The warming hole has a magnitude of ≈3°C and is located in the Northern Hemisphere in 70 and 90 Ma. The warming hole in 150 Ma has a magnitude of ≈1°C and is located in the Southern Hemisphere. Both atmospheric and oceanic processes contribute to trigger the warming hole. For 70- and 90-Ma experiments, atmospheric teleconnection along a great circle from tropics to extratropics intensifies surface winds over subpolar ocean and thereby increases relatively cool seawater transport from high to low latitudes. Meanwhile, global meridional overturning circulation (GMOC) becomes weaker, causing a divergence of the meridional ocean heat transport in the warming hole region. An increasing regional cloud shortwave cooling effect acts to further enhance the warming hole. For 150-Ma experiments, the warming hole is related to the meridional shift of midlatitude jet stream and the weakening of GMOC in the Southern Hemisphere. The strength and phase of the atmospheric teleconnection and the response of GMOC strongly depend on land–sea configuration, resulting in the paleo-Pacific warming hole to occur in special periods only.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Yang, junyang@pku.edu.cn

Abstract

Both observations and simulations show that under global warming, there exists a warming deficit in the North Atlantic, known as the North Atlantic warming hole (NAWH). Here, we show that a similar warming hole occurs in the subpolar Pacific Ocean of paleoclimate simulations. As the solar constant is increased, the local surface becomes substantially cooler rather than warmer in the subpolar paleo-Pacific Ocean under the land–sea configurations of 70, 90, and 150 million years ago (Ma). The warming hole has a magnitude of ≈3°C and is located in the Northern Hemisphere in 70 and 90 Ma. The warming hole in 150 Ma has a magnitude of ≈1°C and is located in the Southern Hemisphere. Both atmospheric and oceanic processes contribute to trigger the warming hole. For 70- and 90-Ma experiments, atmospheric teleconnection along a great circle from tropics to extratropics intensifies surface winds over subpolar ocean and thereby increases relatively cool seawater transport from high to low latitudes. Meanwhile, global meridional overturning circulation (GMOC) becomes weaker, causing a divergence of the meridional ocean heat transport in the warming hole region. An increasing regional cloud shortwave cooling effect acts to further enhance the warming hole. For 150-Ma experiments, the warming hole is related to the meridional shift of midlatitude jet stream and the weakening of GMOC in the Southern Hemisphere. The strength and phase of the atmospheric teleconnection and the response of GMOC strongly depend on land–sea configuration, resulting in the paleo-Pacific warming hole to occur in special periods only.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Yang, junyang@pku.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.3685 MB)
Save
  • Anagnostou, E., and Coauthors, 2016: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533, 380384, https://doi.org/10.1038/nature17423.

    • Search Google Scholar
    • Export Citation
  • Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 76647669, https://doi.org/10.1073/pnas.0711648105.

    • Search Google Scholar
    • Export Citation
  • Boucot, A. J., C. Xu, C. R. Scotese, and R. J. Morley, 2013: Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Vol. 11. SEPM Society for Sedimentary Geology, 31 pp.

  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Branstetter, M. L., and D. J. Erickson III, 2003: Continental runoff dynamics in the Community Climate System Model 2 (CCSM2) control simulation. J. Geophys. Res., 108, 4550, https://doi.org/10.1029/2002JD003212.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., A. V. Fedorov, D. M. Sigman, S. L. Jaccard, R. Tiedemann, and G. H. Haug, 2017: Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv., 3, e1700156, https://doi.org/10.1126/sciadv.1700156.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, and L. M. Polvani, 2020: Identifying a human signal in the North Atlantic warming hole. Nat. Commun., 11, 1540, https://doi.org/10.1038/s41467-020-15285-x.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., R. Pierrehumbert, R. Jacob, and F. Fluteau, 2006: Modelling the primary control of paleogeography on cretaceous climate. Earth Planet. Sci. Lett., 248, 426437, https://doi.org/10.1016/j.epsl.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns. J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Search Google Scholar
    • Export Citation
  • Farnsworth, A., D. J. Lunt, C. L. O’Brien, G. L. Foster, G. N. Inglis, P. Markwick, R. D. Pancost, and S. A. Robinson, 2019a: Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett., 46, 98809889, https://doi.org/10.1029/2019GL083574.

    • Search Google Scholar
    • Export Citation
  • Farnsworth, A., and Coauthors, 2019b: Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv., 5, eaax1697, https://doi.org/10.1126/sciadv.aax1697.

    • Search Google Scholar
    • Export Citation
  • Foster, G. L., D. L. Royer, and D. J. Lunt, 2017: Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845.

    • Search Google Scholar
    • Export Citation
  • Gervais, M., E. Atallah, J. R. Gyakum, and L. B. Tremblay, 2016: Arctic air masses in a warming world. J. Climate, 29, 23592373, https://doi.org/10.1175/JCLI-D-15-0499.1.

    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2018: Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Climate, 31, 59275946, https://doi.org/10.1175/JCLI-D-17-0635.1.

    • Search Google Scholar
    • Export Citation
  • Ghosh, R., and Coauthors, 2023: Two distinct phases of North Atlantic eastern subpolar gyre and warming hole evolution under global warming. J. Climate, 36, 18811894, https://doi.org/10.1175/JCLI-D-22-0222.1.

    • Search Google Scholar
    • Export Citation
  • Gianchandani, K., S. Maor, O. Adam, A. Farnsworth, H. Gildor, D. J. Lunt, and N. Paldor, 2023: Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous. Nat. Commun., 14, 5193, https://doi.org/10.1038/s41467-023-40905-7.

    • Search Google Scholar
    • Export Citation
  • Goddéris, Y., Y. Donnadieu, G. Le Hir, V. Lefebvre, and E. Nardin, 2014: The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Sci. Rev., 128, 122138, https://doi.org/10.1016/j.earscirev.2013.11.004.

    • Search Google Scholar
    • Export Citation
  • Gough, D. O., 1981: Solar interior structure and luminosity variations. Physics of Solar Variations: Proc. 14th ESLAB Symp., Scheveningen, Netherlands, Springer, 2134.

  • Govindasamy, B., and K. Caldeira, 2000: Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 21412144, https://doi.org/10.1029/1999GL006086.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., K. Caldeira, and P. B. Duffy, 2003: Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Global Planet. Change, 37, 157168, https://doi.org/10.1016/S0921-8181(02)00195-9.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • He, C., A. C. Clement, M. A. Cane, L. N. Murphy, J. M. Klavans, and T. M. Fenske, 2022: A North Atlantic warming hole without ocean circulation. Geophys. Res. Lett., 49, e2022GL100420, https://doi.org/10.1029/2022GL100420.

    • Search Google Scholar
    • Export Citation
  • Heinemann, M., J. H. Jungclaus, and J. Marotzke, 2009: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Climate Past, 5, 785802, https://doi.org/10.5194/cp-5-785-2009.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and I.-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44, 35763586, https://doi.org/10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nat. Commun., 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.1. Doc. LA-CC-06-012, 76 pp., https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user’s_manual.pdf.

  • Jones, A. C., M. K. Hawcroft, J. M. Haywood, A. Jones, X. Guo, and J. C. Moore, 2018: Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering. Earth’s Future, 6, 230251, https://doi.org/10.1002/2017EF000720.

    • Search Google Scholar
    • Export Citation
  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667671, https://doi.org/10.1038/s41558-020-0819-8.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., A. Robock, P. M. Forster, J. M. Haywood, M. G. Lawrence, and H. Schmidt, 2013a: An overview of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 13 10313 107, https://doi.org/10.1002/2013JD020569.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013b: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 83208332, https://doi.org/10.1002/jgrd.50646.

    • Search Google Scholar
    • Export Citation
  • Ladant, J.-B., C. J. Poulsen, F. Fluteau, C. R. Tabor, K. G. MacLeod, E. E. Martin, S. J. Haynes, and M. A. Rostami, 2020: Paleogeographic controls on the evolution of late cretaceous ocean circulation. Climate Past, 16, 9731006, https://doi.org/10.5194/cp-16-973-2020.

    • Search Google Scholar
    • Export Citation
  • Landwehrs, J., G. Feulner, S. Petri, B. Sames, and M. Wagreich, 2021: Investigating Mesozoic climate trends and sensitivities with a large ensemble of climate model simulations. Paleoceanography Paleoclimatology, 36, e2020PA004134, https://doi.org/10.1029/2020PA004134.

    • Search Google Scholar
    • Export Citation
  • Li, L., M. S. Lozier, and F. Li, 2022: Century-long cooling trend in subpolar North Atlantic forced by atmosphere: An alternative explanation. Climate Dyn., 58, 22492267, https://doi.org/10.1007/s00382-021-06003-4.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Y. Hu, 2022: Climate variations in the past 250 million years and contributing factors. Zenodo, accessed 4 July 2022, https://doi.org/10.5281/zenodo.7322003.

  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, https://doi.org/10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2022: A high-resolution climate simulation dataset for the past 540 million years. Sci. Data, 9, 371, https://doi.org/10.1038/s41597-022-01490-4.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2023: Climate variations in the past 250 million years and contributing factors. Paleoceanography Paleoclimatology, 38, e2022PA004503, https://doi.org/10.1029/2022PA004503.

    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and Coauthors, 2016: Palaeogeographic controls on climate and proxy interpretation. Climate Past, 12, 11811198, https://doi.org/10.5194/cp-12-1181-2016.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 30633080, https://doi.org/10.1007/s00382-017-3793-8.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR community atmosphere model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 224 pp., https://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 266 pp., https://doi.org/10.5065/D6FB50WZ.

  • Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson, 2001: Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography Paleoclimatology, 16, 576592, https://doi.org/10.1029/2000PA000579.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, https://doi.org/10.1038/nature01090.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and K. Mo, 1993: Linkages between 200-mb tropical and extratropical circulation anomalies during the 1986–1989 ENSO cycle. J. Climate, 6, 595616, https://doi.org/10.1175/1520-0442(1993)006<0595:LBMTAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scotese, C. R., and N. M. Wright, 2018: PALEOMAP Paleodigital elevation models (PaleoDEMS) for the Phanerozoic. Zenodo, accessed 1 August 2018, https://doi.org/10.5281/zenodo.5460860.

  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory LAUR-10-01853, 141 pp., https://www.cesm.ucar.edu/models/cesm1.2/pop2/doc/sci/POPRefManual.pdf.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., C. R. Scotese, and D. J. Lunt, 2021: Deep ocean temperatures through time. Climate Past, 17, 14831506, https://doi.org/10.5194/cp-17-1483-2021.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327347, https://doi.org/10.1357/002224083788520207.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Y. Hu, and J. Yang, 2023: Simulated warming hole in paleo-Pacific oceans. Zenodo, accessed 13 July 2023, https://doi.org/10.5281/zenodo.8143873.

  • Wetherald, R. T., and S. Manabe, 1975: The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 32, 20442059, https://doi.org/10.1175/1520-0469(1975)032<2044:TEOCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Harvey, M. Zahn, and L. Shaffrey, 2012: On the role of the ocean in projected atmospheric stability changes in the Atlantic polar low region. Geophys. Res. Lett., 39, 2012GL054016, https://doi.org/10.1029/2012GL054016.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 23792393, https://doi.org/10.1175/JAS-D-11-0261.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Huck, C. Lique, Y. Donnadieu, J.-B. Ladant, M. Rabineau, and D. Aslanian, 2020: Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean. Climate Past, 16, 12631283, https://doi.org/10.5194/cp-16-1263-2020.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2022: Early Eocene ocean meridional overturning circulation: The roles of atmospheric forcing and strait geometry. Paleoceanography Paleoclimatology, 37, e2021PA004329, https://doi.org/10.1029/2021PA004329.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 450 34
Full Text Views 174 174 13
PDF Downloads 188 188 14