Changes in Compound Hot Extremes over the Mid–High Latitudes of Asia and the Underlying Mechanisms

Wenhao Jiang aKey Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Wenhao Jiang in
Current site
Google Scholar
PubMed
Close
,
Huopo Chen bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
aKey Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Huopo Chen in
Current site
Google Scholar
PubMed
Close
, and
Huijun Wang aKey Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China
bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the spatiotemporal variations of the summer frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia (MHA) from 1979 to 2014. Results show that FCEHE has shown an upward trend with fluctuations, especially in Mongolia–Baikal. The descending anomaly caused by the anomalous high pressure over Mongolia–Baikal results in reduced cloud cover, which increases solar radiation reaching the ground, favoring the higher FCEHE. This process is consistent during the daytime and nighttime periods, with relatively limited nighttime solar radiation, potentially compensated by the increased downward longwave radiation to sustain the extreme high temperatures. This benefit process is closely connected with two main factors: the increased sea ice in the Barents Sea during spring and the anomalously warm sea surface temperature (SST) in the Northwest Pacific during summer. The increased sea ice can affect the Eurasia (EU) teleconnection, while the warm SST affects the Pacific-Japan/East Asia–Pacific pattern (PJ/EAP). Subsequently, these factors further modulate the circulation anomalies and then FCEHE.

Significance Statement

This study provides valuable insights into the spatiotemporal variations and the possible underlying mechanisms for change in the frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia. The spring sea ice anomalies over the Barents Sea and summer sea surface temperature anomalies in the Northwest Pacific affect the local anticyclonic circulation in Mongolia–Baikal through Eurasia (EU) and Pacific-Japan/East Asia–Pacific (PJ/EAP) patterns, respectively. The resulting descending anomaly and reduced cloud cover contribute to interannual variations of FCEHE, which is highly similar during the daytime and nighttime periods. During the nighttime, when the solar radiation is relatively limited, the increased downward longwave radiation may compensate to sustain extreme high temperatures.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huopo Chen, chenhuopo@mail.iap.ac.cn

Abstract

This study investigates the spatiotemporal variations of the summer frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia (MHA) from 1979 to 2014. Results show that FCEHE has shown an upward trend with fluctuations, especially in Mongolia–Baikal. The descending anomaly caused by the anomalous high pressure over Mongolia–Baikal results in reduced cloud cover, which increases solar radiation reaching the ground, favoring the higher FCEHE. This process is consistent during the daytime and nighttime periods, with relatively limited nighttime solar radiation, potentially compensated by the increased downward longwave radiation to sustain the extreme high temperatures. This benefit process is closely connected with two main factors: the increased sea ice in the Barents Sea during spring and the anomalously warm sea surface temperature (SST) in the Northwest Pacific during summer. The increased sea ice can affect the Eurasia (EU) teleconnection, while the warm SST affects the Pacific-Japan/East Asia–Pacific pattern (PJ/EAP). Subsequently, these factors further modulate the circulation anomalies and then FCEHE.

Significance Statement

This study provides valuable insights into the spatiotemporal variations and the possible underlying mechanisms for change in the frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia. The spring sea ice anomalies over the Barents Sea and summer sea surface temperature anomalies in the Northwest Pacific affect the local anticyclonic circulation in Mongolia–Baikal through Eurasia (EU) and Pacific-Japan/East Asia–Pacific (PJ/EAP) patterns, respectively. The resulting descending anomaly and reduced cloud cover contribute to interannual variations of FCEHE, which is highly similar during the daytime and nighttime periods. During the nighttime, when the solar radiation is relatively limited, the increased downward longwave radiation may compensate to sustain extreme high temperatures.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huopo Chen, chenhuopo@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 8.7129 MB)
Save
  • Ajjur, S. B., and S. G. Al-Ghamdi, 2021: Global hotspots for future absolute temperature extremes from CMIP6 models. Earth Space Sci., 8, e2021EA001817, https://doi.org/10.1029/2021EA001817.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477491, https://doi.org/10.1007/s00382-003-0313-9.

    • Search Google Scholar
    • Export Citation
  • Arianos, S., A. Carbone, and C. Türk, 2011: Self-similarity of higher-order moving averages. Phys. Rev., 84E, 046113, https://doi.org/10.1103/PhysRevE.84.046113.

    • Search Google Scholar
    • Export Citation
  • Bianchi, M., M. Boyle, and D. Hollingsworth, 1999: A comparison of methods for trend estimation. Appl. Econ. Lett., 6, 103109, https://doi.org/10.1080/135048599353726.

    • Search Google Scholar
    • Export Citation
  • Bro, R., and A. K. Smilde, 2014: Principal component analysis. Anal. Methods, 6, 28122831, https://doi.org/10.1039/C3AY41907J.

  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic pattern and trends. J. Appl. Meteor. Climatol., 52, 16181631, https://doi.org/10.1175/JAMC-D-12-094.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., W. He, J. Sun, and L. Chen, 2022: Increases of extreme heat-humidity days endanger future populations living in China. Environ. Res. Lett., 17, 064013, https://doi.org/10.1088/1748-9326/ac69fc.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and Y. Li, 2017: An inter-comparison of three heat wave types in china during 1961–2010: Observed basic features and linear trends. Sci. Rep., 7, 45619, https://doi.org/10.1038/srep45619.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 50965103, https://doi.org/10.1002/2016GL072281.

    • Search Google Scholar
    • Export Citation
  • Degefie, D. T., E. Fleischer, O. Klemm, A. V. Soromotin, O. V. Soromotina, A. V. Tolstikov, and N. V. Abramov, 2014: Climate extremes in south western Siberia: Past and future. Stochastic Environ. Res. Risk Assess., 28, 21612173, https://doi.org/10.1007/s00477-014-0872-9.

    • Search Google Scholar
    • Export Citation
  • Deng, K., X. Jiang, C. Hu, and D. Chen, 2020: More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett., 15, 074011, https://doi.org/10.1088/1748-9326/ab8335.

    • Search Google Scholar
    • Export Citation
  • Docquier, D., and T. Koenigk, 2021: A review of interactions between ocean heat transport and Arctic sea ice. Environ. Res. Lett., 16, 123002, https://doi.org/10.1088/1748-9326/ac30be.

    • Search Google Scholar
    • Export Citation
  • Favà, V., J. J. Curto, and M. C. Llasat, 2016: Relationship between the summer NAO and maximum temperatures for the Iberian Peninsula. Theor. Appl. Climatol., 126, 7791, https://doi.org/10.1007/s00704-015-1547-2.

    • Search Google Scholar
    • Export Citation
  • Gao, T., J.-Y. Yu, and H. Paek, 2017: Impacts of four Northern-Hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Climatol., 129, 815831, https://doi.org/10.1007/s00704-016-1801-2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., K. Fan, and Z. Xu, 2023: Causes of the unprecedented month-to-month persistent extreme heat event over south China in early summer 2020: Role of sea surface temperature anomalies in the tropical Indo-Pacific region. J. Geophys. Res. Atmos., 128, e2022JD038422, https://doi.org/10.1029/2022JD038422.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., J. A. Lowe, G. R. McGregor, M. Pelling, and B. D. Malamud, 2009: Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Climatic Change, 92, 299341, https://doi.org/10.1007/s10584-008-9441-x.

    • Search Google Scholar
    • Export Citation
  • Grimaldi, C. M., R. J. Lowe, J. A. Benthuysen, M. V. W. Cuttler, R. H. Green, and J. P. Gilmour, 2023: Hydrodynamic and atmospheric drivers create distinct thermal environments within a coral reef atoll. Coral Reefs, 42, 693706, https://doi.org/10.1007/s00338-023-02371-x.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., 2022: Compound events and associated impacts in China. Science, 25, 104689, https://doi.org/10.1016/j.isci.2022.104689.

  • Hernandez-Deckers, D., T. Matsui, and A. M. Fridlind, 2022: Updraft dynamics and microphysics: On the added value of the cumulus thermal reference frame in simulations of aerosol–deep convection interactions. Atmos. Chem. Phys., 22, 711724, https://doi.org/10.5194/acp-22-711-2022.

    • Search Google Scholar
    • Export Citation
  • Hong, H., J. Sun, and H. Wang, 2022: Variations in summer extreme high-temperature events over northern Asia and the possible mechanisms. J. Climate, 35, 335357, https://doi.org/10.1175/JCLI-D-21-0043.1.

    • Search Google Scholar
    • Export Citation
  • Hong, J.-S., S.-W. Yeh, and K.-H. Seo, 2018: Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean Peninsula. J. Geophys. Res., 123, 71497160, https://doi.org/10.1029/2018JD028360.

    • Search Google Scholar
    • Export Citation
  • Hu, L., and G. Huang, 2019: The changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere. Theor. Appl. Climatol., 139, 261274, https://doi.org/10.1007/s00704-019-02970-1.

    • Search Google Scholar
    • Export Citation
  • Huang, G., and Z. Yan, 1999: The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin. Sci. Bull., 44, 13251329, https://doi.org/10.1007/BF02885855.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., H. Chen, and Z. Shi, 2022: Anthropogenic influence on extreme temperature changes over the mid–high latitudes of Asia. Int. J. Climatol., 42, 86198631, https://doi.org/10.1002/joc.7753.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1997: The 1995 Chicago heat wave: How likely is a recurrence? Bull. Amer. Meteor. Soc., 78, 11071120, https://doi.org/10.1175/1520-0477(1997)078<1107:TCHWHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Le Grix, N., J. Zscheischler, C. Laufkötter, C. S. Rousseaux, and T. L. Frölicher, 2021: Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences, 18, 21192137, https://doi.org/10.5194/bg-18-2119-2021.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, B. Sun, H. Wang, and J. Sun, 2020: A detectable anthropogenic shift toward intensified summer hot drought events over northeastern China. Earth Space Sci., 7, e2019EA000836, https://doi.org/10.1029/2019EA000836.

    • Search Google Scholar
    • Export Citation
  • Li, H., Z. Li, Y. Chen, Y. Xiang, Y. Liu, P. M. Kayumba, and X. Li, 2021: Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios. Environ. Res. Lett., 16, 114004, https://doi.org/10.1088/1748-9326/ac2bce.

    • Search Google Scholar
    • Export Citation
  • Li, J., G. Ren, and Y. Zhan, 2013: A discussion on threshold determination in defining extreme temperature indices. Adv. Meteor. Sci. Technol., 3, 3640.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Ding, and Y. Liu, 2020: Mechanisms for regional compound hot extremes in the mid‐lower reaches of the Yangtze River. Int. J. Climatol., 41, 12921304, https://doi.org/10.1002/joc.6808.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., R. I. Cullather, S. M. J. Nowicki, and K.-M. Kim, 2019: Inter-relationship between subtropical Pacific sea surface temperature, Arctic sea ice concentration, and North Atlantic Oscillation in recent summers. Sci. Rep., 9, 3481, https://doi.org/10.1038/s41598-019-39896-7.

    • Search Google Scholar
    • Export Citation
  • Lin, W., and H. Chen, 2020: Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: From CMIP5 to CMIP6. Atmos. Ocean. Sci. Lett., 13, 598603, https://doi.org/10.1080/16742834.2020.1820303.

    • Search Google Scholar
    • Export Citation
  • Lin, W., R. Chen, Z. Wen, and W. Chen, 2021: Large‐scale circulation features responsible for different types of extreme high temperatures with extreme coverage over South China. Int. J. Climatol., 42, 974992, https://doi.org/10.1002/joc.7283.

    • Search Google Scholar
    • Export Citation
  • Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Climate Change, 8, 634639, https://doi.org/10.1038/s41558-018-0205-y.

    • Search Google Scholar
    • Export Citation
  • Liu, L., B. Wu, and S. Ding, 2023: Combined impact of summer NAO and northern Russian shortwave cloud radiative effect on Eurasian atmospheric circulation. Environ. Res. Lett., 18, 014015, https://doi.org/10.1088/1748-9326/acabd9.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. Chen, G. Zhang, J. Sun, H. Li, and H. Wang, 2020: Changes in lake area in the inner Mongolian plateau under climate change: The role of the Atlantic multidecadal oscillation and Arctic sea ice. J. Climate, 33, 13351349, https://doi.org/10.1175/JCLI-D-19-0388.1.

    • Search Google Scholar
    • Export Citation
  • Luo, C., 2003: Comparison & analysis of maximum-likelihood method & probability weighted moment method. J. Shanghai Inst. Technol., 3, 4044, https://doi.org/10.3969/j.issn.1671-7333.2003.01.011.

    • Search Google Scholar
    • Export Citation
  • Luo, M., N.-C. Lau, and Z. Liu, 2022: Different mechanisms for daytime, nighttime, and compound heatwaves in southern China. Wea. Climate Extremes, 36, 100449, https://doi.org/10.1016/j.wace.2022.100449.

    • Search Google Scholar
    • Export Citation
  • Ma, F., and X. Yuan, 2021: More persistent summer compound hot extremes caused by global urbanization. Geophys. Res. Lett., 48, e2021GL093721, https://doi.org/10.1029/2021GL093721.

    • Search Google Scholar
    • Export Citation
  • Ma, F., X. Yuan, and H. Li, 2022: Characteristics and circulation patterns for wet and dry compound day-night heat waves in mid-eastern China. Global Planet. Change, 213, 103839, https://doi.org/10.1016/j.gloplacha.2022.103839.

    • Search Google Scholar
    • Export Citation
  • Nathans, L. L., F. L. Oswald, and K. Nimon, 2012: Interpreting multiple linear regression: A guidebook of variable importance. Pract. Assess. Res. Eval., 17, 9, https://doi.org/10.7275/5fex-b874.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Search Google Scholar
    • Export Citation
  • Qian, C., and X. Zhang, 2015: Human influences on changes in the temperature seasonality in mid- to high-latitude land areas. J. Climate, 28, 59085921, https://doi.org/10.1175/JCLI-D-14-00821.1.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and J. Srinivasan, 2000: Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J. Climate, 13, 650657, https://doi.org/10.1175/1520-0442(2000)013<0650:NCRFAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, https://doi.org/10.1007/s00382-013-1735-7.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shen, H., S. He, and H. Wang, 2019: Effect of summer Arctic sea ice on the reverse August precipitation anomaly in eastern China between 1998 and 2016. J. Climate, 32, 33893407, https://doi.org/10.1175/JCLI-D-17-0615.1.

    • Search Google Scholar
    • Export Citation
  • Shi, X.-J., and X.-F. Zhi, 2007: Statistical characteristics of blockings in Eurasia from 1950 to 2004. J. Nanjing Inst. Meteor., 30, 338344, https://doi.org/10.13878/j.cnki.dqkxxb.2007.03.007.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2012: Possible impact of the summer North Atlantic Oscillation on extreme hot events in China. Atmos. Ocean. Sci. Lett., 5 (3), 231234, https://doi.org/10.1080/16742834.2012.11446996.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. Liu, J. Cohen, and S. Yu, 2022: Influence and prediction value of Arctic sea ice for spring Eurasian extreme heat events. Commun. Earth Environ., 3, 172, https://doi.org/10.1038/s43247-022-00503-9.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., T. Hu, X. Zhang, C. Li, C. Lu, G. Ren, and Z. Jiang, 2019: Contribution of global warming and urbanization to changes in temperature extremes in eastern China. Geophys. Res. Lett., 46, 11 42611 434, https://doi.org/10.1029/2019GL084281.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talib, J., S. J. Woolnough, N. P. Klingaman, and C. E. Holloway, 2018: The role of the cloud radiative effect in the sensitivity of the intertropical convergence zone to convective mixing. J. Climate, 31, 68216838, https://doi.org/10.1175/JCLI-D-17-0794.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, N. P., M. G. Bosilovich, A. B. Marquardt Collow, R. D. Koster, S. D. Schubert, A. Dezfuli, and S. P. Mahanama, 2020: Mechanisms associated with daytime and nighttime heat waves over the contiguous United States. J. Appl. Meteor. Climatol., 59, 18651882, https://doi.org/10.1175/JAMC-D-20-0053.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and Coauthors, 2021: Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci., 21, 941960, https://doi.org/10.5194/nhess-21-941-2021.

    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Notes and Correspondence; Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, https://doi.org/10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2015: The north China/northeastern Asia severe summer drought in 2014. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Chen, S. F. B. Tett, Z. Yan, P. Zhai, J. Feng, and J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun., 11, 528, https://doi.org/10.1038/s41467-019-14233-8.

    • Search Google Scholar
    • Export Citation
  • Wang, X., X. Lang, and D. Jiang, 2022: Detectable anthropogenic influence on summer compound hot events over China from 1965 to 2014. Environ. Res. Lett., 17, 034042, https://doi.org/10.1088/1748-9326/ac4d4e.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., H. Luo, and S. Yang, 2023: Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environ. Res. Lett., 18, 024023, https://doi.org/10.1088/1748-9326/acb3e5.

    • Search Google Scholar
    • Export Citation
  • Woolway, R. I., B. M. Kraemer, J. Zscheischler, and C. Albergel, 2021: Compound hot temperature and high chlorophyll extreme events in global lakes. Environ. Res. Lett., 16, 124066, https://doi.org/10.1088/1748-9326/ac3d5a.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. J. Climate, 29, 32533271, https://doi.org/10.1175/JCLI-D-15-0105.1.

    • Search Google Scholar
    • Export Citation
  • Wu, S., and Coauthors, 2023: Local mechanisms for global daytime, nighttime, and compound heatwaves. npj Climate Atmos. Sci., 6, 36, https://doi.org/10.1038/s41612-023-00365-8.

    • Search Google Scholar
    • Export Citation
  • Xie, M., C. Wang, and S. Chen, 2022: The role of the maritime continent SST anomalies in maintaining the Pacific–Japan pattern on decadal time scales. J. Climate, 35, 10791095, https://doi.org/10.1175/JCLI-D-21-0555.1.

    • Search Google Scholar
    • Export Citation
  • Xie, W., B. Zhou, Z. Han, and Y. Xu, 2022: Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ. Res. Lett., 17, 045007, https://doi.org/10.1088/1748-9326/ac592d.

    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Chen, and H. Wang, 2021: Interannual variation in summer extreme precipitation over southwestern China and the possible associated mechanisms. Int. J. Climatol., 41, 34253438, https://doi.org/10.1002/joc.7027.

    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, B.-J. Kim, J.-K. Park, J. Mao, J.-Y. Byon, R. Chen, and E.-B. Kim, 2019a: Large-scale circulation anomalies associated with extreme heat in South Korea and southern–central Japan. J. Climate, 32, 27472759, https://doi.org/10.1175/JCLI-D-18-0485.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, J. Mao, and R. Chen, 2019b: Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmos. Ocean. Sci. Lett., 12, 231237, https://doi.org/10.1080/16742834.2019.1617626.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, Y., K. Ichii, Y. Ryu, M. Kang, S. Murayama, S.-J. Kim, and J. R. Cleverly, 2023: Detection of vegetation drying signals using diurnal variation of land surface temperature: Application to the 2018 East Asia heatwave. Remote Sens. Environ., 291, 113572, https://doi.org/10.1016/j.rse.2023.113572.

    • Search Google Scholar
    • Export Citation
  • Yang, Y.-M., J.-H. Park, S.-I. An, B. Wang, and X. Luo, 2021: Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nat. Commun., 12, 1495, https://doi.org/10.1038/s41467-021-21787-z.

    • Search Google Scholar
    • Export Citation
  • You, Q., Z. Jiang, L. Kong, Z. Wu, Y. Bao, S. Kang, and N. Pepin, 2017: A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dyn., 48, 39753989, https://doi.org/10.1007/s00382-016-3315-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., H. Yu, J. Huang, Y. Wei, X. Liu, and T. Zhang, 2019: Comparison of extreme temperature response to 0.5°C additional warming between dry and humid regions over east-central Asia. Int. J. Climatol., 39, 33483364, https://doi.org/10.1002/joc.6025.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., Z. Wu, and R. Jin, 2021: How can the winter North Atlantic Oscillation influence the early summer precipitation in northeast Asia: Effect of the Arctic sea ice. Climate Dyn., 56, 19892005, https://doi.org/10.1007/s00382-020-05570-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, J. Zhu, R. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate Atmos. Sci., 3, 7, https://doi.org/10.1038/s41612-020-0110-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 52525257, https://doi.org/10.1002/grl.51010.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, and H. Wang, 2019: Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol., 40, 841857, https://doi.org/10.1002/joc.6242.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, H. Li, and H. Wang, 2020: Interdecadal variations in extreme high–temperature events over southern China in the early 2000s and the influence of the Pacific Decadal Oscillation. Atmosphere, 11, 829, https://doi.org/10.3390/atmos11080829.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., H. Li, B. Sun, B. Zhou, and M. Duan, 2022: Physical–empirical prediction model for the dominant mode of extreme high temperature events in eastern China during summer. Front. Earth Sci., 10, 989073, https://doi.org/10.3389/feart.2022.989073.

    • Search Google Scholar
    • Export Citation
  • Zou, S. S., P. W. Guo, and H. J. Yang, 2013: The configuration between the East Asia Pacific and the Eurasian teleconnection patterns and its influence on the summer climate of China. J. Meteor. Sci., 33, 1018, https://doi.org/10.3969/2012jms.0152.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 673 673 363
Full Text Views 150 150 60
PDF Downloads 211 211 80