Impact of ENSO and Trends on the Distribution of North American Wintertime Daily Temperature

Emily J. Becker aUniversity of Miami Rosenstiel School for Marine, Earth, and Atmospheric Science, Miami, Florida

Search for other papers by Emily J. Becker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5533-9891
and
Michael K. Tippett bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of the El Niño–Southern Oscillation (ENSO) teleconnection and climate change trends on observed North American wintertime daily 2-m temperature is investigated for 1960–2022 with a quantile regression model, which represents the variability of the full distribution of daily temperature, including extremes and changes in spread. Climate change trends are included as a predictor in the regression model to avoid the potentially confounding effect on ENSO teleconnections. Based on prior evidence of asymmetric impacts from El Niño and La Niña, the ENSO response is taken to be piecewise linear, and the regression model contains separate predictors for warm and cool ENSO. The relationship between these predictors and shifts in median, interquartile range, skewness, and kurtosis of daily 2-m temperature are summarized through Legendre polynomials. Warm ENSO conditions result in significant warming shifts in the median and contraction of the interquartile range in central-northern North America, while no opposite effect is found for cool ENSO conditions in this region. In the southern United States, cool ENSO conditions produce a warming shift in the median, while warm ENSO conditions have little impact on the median, but contracts the interquartile range. Climate change trends are present as a near-uniform warming in the median and across quantiles and have no discernable impact on interquartile range or higher-order moments. Trends and ENSO together explain a substantial fraction of the interannual variability of daily temperature distribution shifts across much of North America and, to a lesser extent, changes of the interquartile range.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily J. Becker, emily.becker@miami.edu

Abstract

The effect of the El Niño–Southern Oscillation (ENSO) teleconnection and climate change trends on observed North American wintertime daily 2-m temperature is investigated for 1960–2022 with a quantile regression model, which represents the variability of the full distribution of daily temperature, including extremes and changes in spread. Climate change trends are included as a predictor in the regression model to avoid the potentially confounding effect on ENSO teleconnections. Based on prior evidence of asymmetric impacts from El Niño and La Niña, the ENSO response is taken to be piecewise linear, and the regression model contains separate predictors for warm and cool ENSO. The relationship between these predictors and shifts in median, interquartile range, skewness, and kurtosis of daily 2-m temperature are summarized through Legendre polynomials. Warm ENSO conditions result in significant warming shifts in the median and contraction of the interquartile range in central-northern North America, while no opposite effect is found for cool ENSO conditions in this region. In the southern United States, cool ENSO conditions produce a warming shift in the median, while warm ENSO conditions have little impact on the median, but contracts the interquartile range. Climate change trends are present as a near-uniform warming in the median and across quantiles and have no discernable impact on interquartile range or higher-order moments. Trends and ENSO together explain a substantial fraction of the interannual variability of daily temperature distribution shifts across much of North America and, to a lesser extent, changes of the interquartile range.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily J. Becker, emily.becker@miami.edu
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., P. Uotila, and N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res., 114, D18116, https://doi.org/10.1029/2009JD012301.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and L. V. Alexander, 2012: The impact of the El Niño-Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett., 39, L20702, https://doi.org/10.1029/2012GL053409.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2023: February 2023 ENSO update: The ENSO Blog investigates, Part 3. http://www.climate.gov/news-features/blogs/enso/february-2023-enso-update-enso-blog-investigates-part-3.

  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B, 57, 289300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. C. Fyfe, and J. A. Screen, 2021: Decreasing subseasonal temperature variability in the northern extratropics attributed to human influence. Nat. Geosci., 14, 719723, https://doi.org/10.1038/s41561-021-00826-w.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. Tippett, 2022: Statistical Methods for Climate Scientists. Cambridge University Press, 542 pp.

  • Draper, N. R., and H. Smith, 1998: Applied Regression Analysis. 3rd ed. John Wiley and Sons, 706 pp.

  • Eyring, V., and Coauthors, 2021: Human influence on the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 423–552, https://doi.org/10.1017/9781009157896.005.

  • Falasca, F., P. Perezhogin, and L. Zanna, 2023: A data-driven framework for dimensionality reduction and causal inference in climate fields. arXiv, 2306.14433, https://doi.org/10.48550/arXiv.2306.14433.

  • Frankignoul, C., and Y.-O. Kwon, 2022: On the statistical estimation of asymmetrical relationship between two climate variables. Geophys. Res. Lett., 49, e2022GL100777, https://doi.org/10.1029/2022GL100777.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. J. Climate, 11, 31923203, https://doi.org/10.1175/1520-0442(1998)011<3192:EIOIER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 15751586, https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Haugen, M. A., M. L. Stein, E. J. Moyer, and R. L. Sriver, 2018: Estimating changes in temperature distributions in a large ensemble of climate simulations using quantile regression. J. Climate, 31, 85738588, https://doi.org/10.1175/JCLI-D-17-0782.1.

    • Search Google Scholar
    • Export Citation
  • Haugen, M. A., M. L. Stein, R. L. Sriver, and E. J. Moyer, 2019: Future climate emulations using quantile regressions on large ensembles. Adv. Stat. Climatol. Meteor. Oceanogr., 5, 3755, https://doi.org/10.5194/ascmo-5-37-2019.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 15551572, https://doi.org/10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 12771293, https://doi.org/10.1175/1520-0442(2001)014<1277:ROTNCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2016: Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J. Geophys. Res. Atmos., 121, 12 69012 701, https://doi.org/10.1002/2016JD024932.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Search Google Scholar
    • Export Citation
  • Kenney, J. F., 1954: Mathematics of Statistics. 3rd ed. D. Van Nostrand, 348 pp.

  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 38723889, https://doi.org/10.1175/2008JCLI2125.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., Y.-Y. Lee, J.-H. Oh, and A.-Y. Lim, 2021: Errors in the winter temperature response to ENSO over North America in seasonal forecast models. J. Climate, 34, 82578271, https://doi.org/10.1175/JCLI-D-21-0094.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2024: A relative sea surface temperature index for classifying ENSO events in a changing climate. J. Climate, 37, 11971211, https://doi.org/10.1175/JCLI-D-23-0406.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2019: ENSO influence over the Pacific North American sector: Uncertainty due to atmospheric internal variability. Climate Dyn., 52, 61496172, https://doi.org/10.1007/s00382-018-4500-0.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos., 121, 88498868, https://doi.org/10.1002/2016JD025292.

    • Search Google Scholar
    • Export Citation
  • Moors, J., 1988: A quantile alternative for kurtosis. J. Roy. Stat. Soc. Ser. D, 37, 2532, https://doi.org/10.2307/2348376.

  • Rhines, A., K. A. McKinnon, M. P. Tingley, and P. Huybers, 2017: Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Climate, 30, 11391157, https://doi.org/10.1175/JCLI-D-16-0363.1.

    • Search Google Scholar
    • Export Citation
  • Rohde, R. A., and Z. Hausfather, 2020: The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data, 12, 34693479, https://doi.org/10.5194/essd-12-3469-2020.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Plotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., and P. D. Sardeshmukh, 2000: The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol., 20, 15431557, https://doi.org/10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Sutton, M., S. M. Larson, and E. Becker, 2024: New insights on ENSO teleconnection asymmetry and ENSO forced atmospheric circulat ion variability over North America. Climate Dyn., https://doi.org/10.1007/s00382-023-07058-1, in press.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westby, R. M., Y.-Y. Lee, and R. X. Black, 2013: Anomalous temperature regimes during the cool season: Long-term trends, low-frequency mode modulation, and representation in CMIP5 simulations. J. Climate, 26, 90619076, https://doi.org/10.1175/JCLI-D-13-00003.1.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., R. M. Dole, and C. A. Smith, 1999: Short-term climate extremes over the continental United States and ENSO. Part I: Seasonal temperatures. J. Climate, 12, 32553272, https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, A., and W. W. Hsieh, 2004: The nonlinear Northern Hemisphere winter atmospheric response to ENSO. Geophys. Res. Lett., 31, L02203, https://doi.org/10.1029/2003GL018885.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, https://doi.org/10.1175/JCLI-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., T. L. Delworth, L. Jia, N. C. Johnson, F. Lu, and C. McHugh, 2022: On the seasonal prediction and predictability of winter surface Temperature Swing Index over North America. Front. Climate, 4, 972119, https://doi.org/10.3389/fclim.2022.972119.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, https://doi.org/10.1175/2011JCLI3944.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Perlwitz, and M. P. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 10191025, https://doi.org/10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 729 729 260
Full Text Views 204 204 42
PDF Downloads 257 257 48