Deep Winter Mixed Layer Anchored by the Meandering Antarctic Circumpolar Current: Cross-Basin Variations

Zihan Song aFrontier Science Center for Deep Ocean Multispheres and Earth System, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bEarth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Search for other papers by Zihan Song in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie cScripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3676-1325
,
Lixiao Xu aFrontier Science Center for Deep Ocean Multispheres and Earth System, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Lixiao Xu in
Current site
Google Scholar
PubMed
Close
,
Xiao-Tong Zheng aFrontier Science Center for Deep Ocean Multispheres and Earth System, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Xiao-Tong Zheng in
Current site
Google Scholar
PubMed
Close
,
Xiaopei Lin aFrontier Science Center for Deep Ocean Multispheres and Earth System, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Xiaopei Lin in
Current site
Google Scholar
PubMed
Close
, and
Yu-Fan Geng aFrontier Science Center for Deep Ocean Multispheres and Earth System, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Yu-Fan Geng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A deep winter mixed layer forms north of the Antarctic Circumpolar Current (ACC) in the Indo-Pacific sectors, while the mixed layer depth (MLD) is shallow in the Atlantic. Using observations and a global atmospheric model, this study investigates the contribution of surface buoyancy flux and background stratification to interbasin MLD variations. The surface heat flux is decomposed into broad-scale and frontal-scale variations. At the broad scale, the meandering ACC path is accompanied by a zonal wavenumber-1 structure of sea surface temperature (SST) with a warmer Pacific than the Atlantic; under the prevailing westerly winds, this temperature contrast results in larger surface heat loss facilitating deeper MLD in the Indo-Pacific sectors than in the Atlantic. In the Indian sector, the intense ACC fronts strengthen surface heat loss compared to the Pacific. The surface freshwater flux pattern largely follows that of evaporation and reinforces the heat flux pattern, especially in the southeast Pacific. A diagnostic relationship is introduced to highlight the role of ACC’s sloping isopycnals in setting a weak submixed layer stratification north of ACC. This weak stratification varies in magnitude across basins. In the Atlantic and western Indian Oceans where the ACC is at a low latitude (∼45°S), solar heating, intrusions of subtropical gyres, and energetic mesoscale eddies together maintain relatively strong stratification. In the southeast Pacific, in comparison, the ACC reaches the southernmost latitude (56°S), far away from the subtropical front. This creates weaker stratification, allowing deep mixed layers to form, aided by surface buoyancy loss.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Shang-Ping Xie, sxie@ucsd.edu; Lixiao Xu, lxu@ouc.edu.cn

Abstract

A deep winter mixed layer forms north of the Antarctic Circumpolar Current (ACC) in the Indo-Pacific sectors, while the mixed layer depth (MLD) is shallow in the Atlantic. Using observations and a global atmospheric model, this study investigates the contribution of surface buoyancy flux and background stratification to interbasin MLD variations. The surface heat flux is decomposed into broad-scale and frontal-scale variations. At the broad scale, the meandering ACC path is accompanied by a zonal wavenumber-1 structure of sea surface temperature (SST) with a warmer Pacific than the Atlantic; under the prevailing westerly winds, this temperature contrast results in larger surface heat loss facilitating deeper MLD in the Indo-Pacific sectors than in the Atlantic. In the Indian sector, the intense ACC fronts strengthen surface heat loss compared to the Pacific. The surface freshwater flux pattern largely follows that of evaporation and reinforces the heat flux pattern, especially in the southeast Pacific. A diagnostic relationship is introduced to highlight the role of ACC’s sloping isopycnals in setting a weak submixed layer stratification north of ACC. This weak stratification varies in magnitude across basins. In the Atlantic and western Indian Oceans where the ACC is at a low latitude (∼45°S), solar heating, intrusions of subtropical gyres, and energetic mesoscale eddies together maintain relatively strong stratification. In the southeast Pacific, in comparison, the ACC reaches the southernmost latitude (56°S), far away from the subtropical front. This creates weaker stratification, allowing deep mixed layers to form, aided by surface buoyancy loss.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Shang-Ping Xie, sxie@ucsd.edu; Lixiao Xu, lxu@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.4862 MB)
Save
  • Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Search Google Scholar
    • Export Citation
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602, https://doi.org/10.1145/321607.321609.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and A. J. S. Meijers, 2021: Strong quasi-stationary wintertime atmospheric surface pressure anomalies drive a dipole pattern in the subantarctic mode water formation. J. Climate, 34, 69897004, https://doi.org/10.1175/JCLI-D-20-0593.1.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air-sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, https://doi.org/10.1175/2011JCLI3858.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., 2017: New perspectives on frontal variability in the Southern Ocean. J. Phys. Oceanogr., 47, 11511168, https://doi.org/10.1175/JPO-D-16-0222.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4), 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., L. Xu, and Y. Zhang, 2021: Impact of anticyclonic eddies under stormy weather on the mixed layer variability in April South of the Kuroshio Extension. J. Geophys. Res. Oceans, 126, e2020JC016739, https://doi.org/10.1029/2020JC016739.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., L. Xu, S.-P. Xie, H. Sasaki, Z. Zhang, H. Cao, and Y. Zhang, 2022: Submesoscale frontal instabilities modulate large-scale distribution of the winter deep mixed layer in the Kuroshio-Oyashio Extension. J. Geophys. Res. Oceans, 127, e2022JC018915, https://doi.org/10.1029/2022JC018915.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, and S. T. Gille, 2006: Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr., 36, 20752089, https://doi.org/10.1175/JPO2973.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 44254442, https://doi.org/10.1175/JCLI4259.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., W. G. Large, and R. J. Small, 2018: Argo observations of the deep mixing band in the Southern Ocean: A salinity modeling challenge. J. Geophys. Res. Oceans, 123, 75997617, https://doi.org/10.1029/2018JC014275.

    • Search Google Scholar
    • Export Citation
  • Freeman, N. M., N. S. Lovenduski, and P. R. Gent, 2016: Temporal variability in the Antarctic Polar front (2002–2014). J. Geophys. Res. Oceans, 121, 72637276, https://doi.org/10.1002/2016JC012145.

    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2017: Recent wind-driven change in subantarctic mode water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. J. McGillicuddy Jr., and A. J. Moulin, 2019: Mesoscale eddies modulate mixed layer depth globally. Geophys. Res. Lett., 46, 15051512, https://doi.org/10.1029/2018GL080006.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc., A372, 20130273, https://doi.org/10.1098/rsta.2013.0273.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1989: Brazil-Malvinas confluence–1984. Deep-Sea Res., 36A, 359384, https://doi.org/10.1016/0198-0149(89)90042-3.

  • Gordon, A. L., J. R. E. Lutjeharms, and M. L. Grundlingh, 1987: Stratification and circulation at the Agulhas retroflection. Deep-Sea Res., 34A, 565599, https://doi.org/10.1016/0198-0149(87)90006-9.

    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holte, J., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2012: The role of air-sea fluxes in subantarctic mode water formation. J. Geophys. Res., 117, C03040, https://doi.org/10.1029/2011JC007798.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954, https://doi.org/10.1175/1520-0485(2002)032<0039:TROETI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. S., and A. H. Orsi, 2014: On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr., 44, 30543071, https://doi.org/10.1175/JPO-D-13-0217.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. George Nurser, I. Stevens, and J.-B. Sallée, 2011: Subduction over the Southern Indian Ocean in a high-resolution atmosphere-ocean coupled model. J. Climate, 24, 38303849, https://doi.org/10.1175/2011JCLI3888.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and S. Lee, 2017: A mechanism of mixed layer formation in the Indo-Western Pacific Southern Ocean: Preconditioning by an eddy-driven jet-scale overturning circulation. J. Phys. Oceanogr., 47, 27552772, https://doi.org/10.1175/JPO-D-17-0006.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., S. Lee, and A. Griesel, 2016: Eddy fluxes and jet-scale overturning circulations in the Indo–Western Pacific Southern Ocean. J. Phys. Oceanogr., 46, 29432959, https://doi.org/10.1175/JPO-D-15-0241.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, S.-P. Xie, and A. Fedorov, 2018: Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Search Google Scholar
    • Export Citation
  • MacIntosh, C. R., C. J. Merchant, and K. von Schuckmann, 2017: Uncertainties in steric sea level change estimation during the satellite Altimeter Era: Concepts and practices. Surv. Geophys., 38, 5987, https://doi.org/10.1007/s10712-016-9387-x.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic mode water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. Angel, Ed., Pergamon, 103–119.

  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40, 427464.

  • Moore, J. K., M. R. Abbott, and J. G. Richman, 1999: Location and dynamics of the Antarctic Polar front from satellite sea surface temperature data. J. Geophys. Res., 104, 30593073, https://doi.org/10.1029/1998JC900032.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., D. W. Waugh, A. M. Hogg, D. C. Jones, and R. P. Abernathey, 2022: Ventilation of the Southern Ocean pycnocline. Annu. Rev. Mar. Sci., 14, 405430, https://doi.org/10.1146/annurev-marine-010419-011012.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., L. Jullion, D. P. Stevens, K. J. Heywood, and B. A. King, 2009: Variability of subantarctic mode water and Antarctic intermediate water in the Drake passage during the late-twentieth and early-twenty-first centuries. J. Climate, 22, 36613688, https://doi.org/10.1175/2009JCLI2621.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, https://doi.org/10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., https://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 65156535, https://doi.org/10.1175/2009JCLI2960.1.

    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and T. Spengler, 2019: Prevailing surface wind direction during air-sea heat exchange. J. Climate, 32, 56015617, https://doi.org/10.1175/JCLI-D-18-0752.1.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Völker, and J.-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, https://doi.org/10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, https://doi.org/10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J.-B. Sallée, S. Schmidtko, F. Roquet, and J.-B. Charrassin, 2017: The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing. J. Geophys. Res. Oceans, 122, 16081633, https://doi.org/10.1002/2016JC011970.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and R. A. Fine, 2020: Variability of the sub‐Antarctic mode water subduction rate during the Argo period. Geophys. Res. Lett., 47, e2020GL088248, https://doi.org/10.1029/2020GL088248.

    • Search Google Scholar
    • Export Citation
  • Ren, L., K. Speer, and E. P. Chassignet, 2011: The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res., 116, C08031, https://doi.org/10.1029/2010JC006634.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. J. Phys. Oceanogr., 32, 13081321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and A. C. Naveira Garabato, 2013: Dynamics of the Southern Ocean Circulation. Ocean Circulation and Climate, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, 471–492, https://doi.org/10.1016/B978-0-12-391851-2.00018-0.

  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., N. Wienders, K. Speer, and R. Morrow, 2006: Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, https://doi.org/10.1007/s10236-005-0054-x.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010a: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. G. Speer, and S. R. Rintoul, 2010b: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, and Z. Wang, 2013: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18451862, https://doi.org/10.1002/jgrc.20157.

    • Search Google Scholar
    • Export Citation
  • Shi, J.-R., S.-P. Xie, and L. D. Talley, 2018: Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate, 31, 74597479, https://doi.org/10.1175/JCLI-D-18-0170.1.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31, 10051030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., L. D. Talley, T. K. Chereskin, R. Fine, and J. Holte, 2010: Antarctic intermediate water and subantarctic mode water formation in the Southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40, 15581574, https://doi.org/10.1175/2010JPO4114.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., A. K. DuVivier, D. B. Whitt, M. C. Long, I. Grooms, and W. G. Large, 2021: On the control of subantarctic stratification by the ocean circulation. Climate Dyn., 56, 299327, https://doi.org/10.1007/s00382-020-05473-2.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, https://doi.org/10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • Song, X., 2020: Explaining the zonal asymmetry in the air-sea net heat flux climatology over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 125, e2020JC016215, https://doi.org/10.1029/2020JC016215.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and D. R. Watts, 2002: Heat flux carried by the Antarctic Circumpolar Current mean flow. J. Geophys. Res., 107, 3119, https://doi.org/10.1029/2001JC001187.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: Schematics and transports. Oceanography, 26 (1), 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. D. Talley, M. R. Mazloff, and I. Cerovečki, 2016: Zonal variations in the Southern Ocean heat budget. J. Climate, 29, 65636579, https://doi.org/10.1175/JCLI-D-15-0630.1.

    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., I. Cerovečki, S. A. Josey, S. T. Gille, and E. Schulz, 2020: Mooring observations of air–sea heat fluxes in two subantarctic mode water formation regions. J. Climate, 33, 27572777, https://doi.org/10.1175/JCLI-D-19-0653.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, https://doi.org/10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., D. Iudicone, F. Busdraghi, and Y. H. Park, 2010: Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model. Climate Dyn., 34, 153184, https://doi.org/10.1007/s00382-009-0724-3.

    • Search Google Scholar
    • Export Citation
  • Wang, J., M. R. Mazloff, and S. T. Gille, 2014: Pathways of the Agulhas waters poleward of 29°S. J. Geophys. Res. Oceans, 119, 42344250, https://doi.org/10.1002/2014JC010049.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2012: The Southern Ocean and its climate in CCSM4. J. Climate, 25, 26522675, https://doi.org/10.1175/JCLI-D-11-00302.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, https://doi.org/10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Xia, X., L. Xu, S.-P. Xie, Y. Hong, and Y. Du, 2021: Fast and slow responses of the subantarctic mode water in the South Indian Ocean to global warming in CMIP5 extended RCP4.5 simulations. Climate Dyn., 56, 31573171, https://doi.org/10.1007/s00382-021-05635-w.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean-atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2023: Coupled Atmosphere-Ocean Dynamics: From El Nino to Climate Change. Elsevier, 424 pp.

  • Xu, L., Y. Ding, and S.-P. Xie, 2021: Buoyancy and wind driven changes in subantarctic mode water during 2004–2019. Geophys. Res. Lett., 48, e2021GL092511, https://doi.org/10.1029/2021GL092511.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 449 449 153
Full Text Views 205 205 89
PDF Downloads 268 268 111