A Nonlinear Full-Field Conceptual Model for ENSO Diversity

Xianghui Fang aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bShanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Fudan University, Shanghai, China
cShanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Shanghai, China

Search for other papers by Xianghui Fang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1210-0055
,
Henk Dijkstra dInstitute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
eCentre for Complex Systems Studies, Utrecht University, Utrecht, Netherlands

Search for other papers by Henk Dijkstra in
Current site
Google Scholar
PubMed
Close
,
Claudia Wieners dInstitute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
eCentre for Complex Systems Studies, Utrecht University, Utrecht, Netherlands

Search for other papers by Claudia Wieners in
Current site
Google Scholar
PubMed
Close
, and
Francesco Guardamagna dInstitute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
eCentre for Complex Systems Studies, Utrecht University, Utrecht, Netherlands

Search for other papers by Francesco Guardamagna in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the strongest year-to-year fluctuation of the global climate system, El Niño–Southern Oscillation (ENSO) exhibits spatial–temporal diversity, which challenges the classical ENSO theories that mainly focus on the canonical eastern Pacific (EP) type. Besides, the complicated interplay between the interannual anomaly fields and the decadally varying mean state is another difficulty in current ENSO theory. To better account for these issues, the nonlinear two-region recharge paradigm model is extended to a three-region full-field conceptual model to capture the physics in the western Pacific (WP), central Pacific (CP), and EP regions. The results show that the extended conceptual model displays a rich dynamical behavior as parameters setting the efficiencies of upwelling and zonal advection are varied. The model can not only generate El Niño bursting behavior but also simulate the statistical asymmetries between the two types of El Niños and the warm and cold phases of ENSO. Finally, since both the anomaly fields and mean states are simulated by the model, it provides a simple tool to investigate their interactions. The strengthening of the upwelling efficiency, which can be seen as an analogy to a cooling thermocline associated with the oceanic tunnel to the midlatitudes, will increase the zonal gradient of the mean state temperature between the WP and EP, i.e., resembling a negative Pacific decadal oscillation (PDO) pattern along the equatorial Pacific. The influence of the zonal advection efficiency is quite the opposite, i.e., its strengthening will reduce the zonal gradient of the mean state temperature along the equatorial Pacific.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Fang, fangxh@fudan.edu.cn

Abstract

As the strongest year-to-year fluctuation of the global climate system, El Niño–Southern Oscillation (ENSO) exhibits spatial–temporal diversity, which challenges the classical ENSO theories that mainly focus on the canonical eastern Pacific (EP) type. Besides, the complicated interplay between the interannual anomaly fields and the decadally varying mean state is another difficulty in current ENSO theory. To better account for these issues, the nonlinear two-region recharge paradigm model is extended to a three-region full-field conceptual model to capture the physics in the western Pacific (WP), central Pacific (CP), and EP regions. The results show that the extended conceptual model displays a rich dynamical behavior as parameters setting the efficiencies of upwelling and zonal advection are varied. The model can not only generate El Niño bursting behavior but also simulate the statistical asymmetries between the two types of El Niños and the warm and cold phases of ENSO. Finally, since both the anomaly fields and mean states are simulated by the model, it provides a simple tool to investigate their interactions. The strengthening of the upwelling efficiency, which can be seen as an analogy to a cooling thermocline associated with the oceanic tunnel to the midlatitudes, will increase the zonal gradient of the mean state temperature between the WP and EP, i.e., resembling a negative Pacific decadal oscillation (PDO) pattern along the equatorial Pacific. The influence of the zonal advection efficiency is quite the opposite, i.e., its strengthening will reduce the zonal gradient of the mean state temperature along the equatorial Pacific.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Fang, fangxh@fudan.edu.cn
Save
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., E. Tziperman, Y. M. Okumura, and T. Li, 2020: ENSO irregularity and asymmetry. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 153–172.

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/pdfpapers/70720.pdf.

  • Burgers, G., M. A. Balmaseda, F. C. Vossepoel, G. J. van Oldenborgh, and P. J. van Leeuwen, 2002: Balanced ocean-data assimilation near the equator. J. Phys. Oceanogr., 32, 25092519, https://doi.org/10.1175/1520-0485(2002)032<2509:BODANT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, https://doi.org/10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and X. Fang, 2023: A simple multiscale intermediate coupled stochastic model for El Niño diversity and complexity. J. Adv. Model. Earth Syst., 15, e2022MS003469, https://doi.org/10.1029/2022MS003469.

    • Search Google Scholar
    • Export Citation
  • Chen, N., X. Fang, and J.-Y. Yu, 2022: A multiscale model for El Niño complexity. npj Climate Atmos. Sci., 5, 16, https://doi.org/10.1038/s41612-022-00241-x.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and G. Burgers, 2002: Fluid dynamics of El Niño variability. Annu. Rev. Fluid Mech., 34, 531558, https://doi.org/10.1146/annurev.fluid.34.090501.144936.

    • Search Google Scholar
    • Export Citation
  • Ding, R., and J. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett., 364A, 396400, https://doi.org/10.1016/j.physleta.2006.11.094.

    • Search Google Scholar
    • Export Citation
  • Doedel, E. J., 1981: AUTO, a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer., 30, 265384.

  • Doedel, E. J., H. B. Keller, and J. P. Kernevez, 1991: Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions. Int. J. Bifurcation Chaos, 1, 493520, https://doi.org/10.1142/S0218127491000397.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and M. Mu, 2018: A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J. Climate, 31, 49654979, https://doi.org/10.1175/JCLI-D-17-0633.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and F. Zheng, 2018: Simulating eastern- and central-Pacific type ENSO using a simple coupled model. Adv. Atmos. Sci., 35, 671681, https://doi.org/10.1007/s00376-017-7209-9.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and N. Chen, 2023: Quantifying the predictability of ENSO complexity using a statistically accurate multiscale stochastic model and information theory. J. Climate, 36, 26812702, https://doi.org/10.1175/JCLI-D-22-0151.1.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Search Google Scholar
    • Export Citation
  • Geng, L., and F.-F. Jin, 2022: ENSO diversity simulated in a revised Cane-Zebiak model. Front. Earth Sci., 10, 899323, https://doi.org/10.3389/feart.2022.899323.

    • Search Google Scholar
    • Export Citation
  • Geng, T., W. Cai, and L. Wu, 2020: Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett., 47, e2020GL088784, https://doi.org/10.1029/2020GL088784.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, https://doi.org/10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Guckenheimer, J., A. Timmermann, H. Dijkstra, and A. Roberts, 2017: (Un)predictability of strong El Niño events. Dyn. Stat. Climate Syst., 2, dzx004, https://doi.org/10.1093/climsys/dzx004.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and F.-F. Jin, 2017: Subsurface nonlinear dynamical heating and ENSO asymmetry. Geophys. Res. Lett., 44, 12 42712 435, https://doi.org/10.1002/2017GL075771.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and M. Watanabe, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30, 34013420, https://doi.org/10.1175/JCLI-D-16-0406.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., F.-F. Jin, and M. Stuecker, 2020: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.

    • Search Google Scholar
    • Export Citation
  • Hua, L., Y. Yu, and D.-Z. Sun, 2015: A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Climate, 28, 13621382, https://doi.org/10.1175/JCLI-D-14-00404.1.

    • Search Google Scholar
    • Export Citation
  • Ji, C., M. Mu, X. Fang, and L. Tao, 2023: Improving the forecasting of El Niño amplitude based on an ensemble forecast strategy for westerly wind bursts. J. Climate, 36, 86758694, https://doi.org/10.1175/JCLI-D-23-0233.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., H.-C. Chen, S. Zhao, M. Hayashi, C. Karamperidou, M. F. Stuecker, R. Xie, and C. Geng, 2020: Simple ENSO models. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 119–151.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and D. L. Hartmann, 2017: Nonlinear ENSO warming suppression (NEWS). J. Climate, 30, 42274251, https://doi.org/10.1175/JCLI-D-16-0541.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. F. Levine, M. Newman, C. Ganter, J.-J. Luo, M. K. Tippett, and T. N. Stockdale, 2020: ENSO prediction. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 227–246.

  • Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 75907606, https://doi.org/10.1175/JCLI-D-11-00490.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2013: Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys. Res. Lett., 40, 47224727, https://doi.org/10.1002/grl.50913.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, S. Fournier, and M. A. Balmaseda, 2020: ENSO observations. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 39–63.

  • Neelin, J. D., and F.-F. Jin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part II: Analytical results in the weak-coupling limit. J. Atmos. Sci., 50, 35043522, https://doi.org/10.1175/1520-0469(1993)050<3504:MOITOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, https://doi.org/10.1038/302295a0.

  • Picaut, J., M. Ioualalen, C. Menkès, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, https://doi.org/10.1126/science.274.5292.1486.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Search Google Scholar
    • Export Citation
  • Planton, Y. Y., and Coauthors, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102, E193E217, https://doi.org/10.1175/BAMS-D-19-0337.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, A., J. Guckenheimer, E. Widiasih, A. Timmermann, and C. K. R. T. Jones, 2016: Mixed-mode oscillations of El Niño–Southern Oscillation. J. Atmos. Sci., 73, 17551766, https://doi.org/10.1175/JAS-D-15-0191.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774, https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566, https://doi.org/10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 1997: El Niño: A coupled response to radiative heating? Geophys. Res. Lett., 24, 20312034, https://doi.org/10.1029/97GL01960.

    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735, https://doi.org/10.1175/2008JCLI2285.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, https://doi.org/10.1007/s00382-015-2665-3.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., C. Karamperidou, and B. Dewitte, 2019: A theoretical model of strong and moderate El Niño regimes. Climate Dyn., 52, 74777493, https://doi.org/10.1007/s00382-018-4100-z.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., and Coauthors, 2018: Progress in ENSO prediction and predictability study. Natl. Sci. Rev., 5, 826839, https://doi.org/10.1093/nsr/nwy105.

    • Search Google Scholar
    • Export Citation
  • Thual, S., and B. Dewitte, 2023: ENSO complexity controlled by zonal shifts in the Walker circulation. Nat. Geosci., 16, 328332, https://doi.org/10.1038/s41561-023-01154-x.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, N. Chen, and S. N. Stechmann, 2016: Simple stochastic model for El Niño with westerly wind bursts. Proc. Natl. Acad. Sci. USA, 113, 10 24510 250, https://doi.org/10.1073/pnas.1612002113.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F.-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152165, https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fang, 1996: Chaotic oscillations of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 27862802, https://doi.org/10.1175/1520-0469(1996)053<2786:COOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2018: A review of ENSO theories. Natl. Sci. Rev., 5, 813825, https://doi.org/10.1093/nsr/nwy104.

  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño‐Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Search Google Scholar
    • Export Citation
  • Xing, X., X. Fang, D. Pang, and C. Ji, 2024: Seasonal variation of the sea surface temperature growth rate of ENSO. Adv. Atmos. Sci., 41, 465477, https://doi.org/10.1007/s00376-023-3005-x.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and T. Li, 2023: To what extent does ENSO rectify the tropical Pacific mean state? Climate Dyn., 61, 38753891, https://doi.org/10.1007/s00382-023-06750-6.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, and S. E. Zebiak, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125, 20432056, https://doi.org/10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., X. Fang, and M. Mu, 2020: The optimal precursor of El Niño in the GFDL CM2p1 model. J. Geophys. Res. Oceans, 124, e2019JC015797, https://doi.org/10.1029/2019JC015797.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., X. Fang, and M. Mu, 2023: Optimal precursors for central Pacific El Niño events in GFDL CM2p1. J. Climate, 36, 34533467, https://doi.org/10.1175/JCLI-D-22-0328.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., F.-F. Jin, and W. Zhang, 2020: A concise and effective expression relating subsurface temperature to the thermocline in the equatorial Pacific. Geophys. Res. Lett., 47, e2020GL087848, https://doi.org/10.1029/2020GL087848.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, 2012, https://doi.org/10.1029/2003GL018010.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43, 12 56012 568, https://doi.org/10.1002/2016GL071636.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 589 589 140
Full Text Views 181 181 79
PDF Downloads 215 215 107