Sensitivity of Easterly QBO’s Boreal Winter Teleconnections and Surface Impacts to SSWs

Dillon Elsbury aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by Dillon Elsbury in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3730-9226
,
Amy Butler bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by Amy Butler in
Current site
Google Scholar
PubMed
Close
,
Yannick Peings cDepartment of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Yannick Peings in
Current site
Google Scholar
PubMed
Close
, and
Gudrun Magnusdottir cDepartment of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Gudrun Magnusdottir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The quasi-biennial oscillation (QBO) is thought to influence boreal winter surface conditions over Asia and around the North Atlantic. Confirming if these responses are robust is complicated by the QBO having multiple pathways to influence surface conditions as well as internal variability. The reanalysis record suggests that sudden stratospheric warmings (SSWs), breakdowns of the polar vortex that can elicit persistent surface impacts, are more frequent during easterly QBO (EQBO). Hence, this modulated frequency of SSWs may account for some of the EQBO surface responses. However, many climate models do not reproduce this QBO–SSW relationship, perhaps because it is noise or because the model QBOs are deficient. We circumvent these issues by using an ensemble of fixed boundary condition branched simulations in which a realistic EQBO is prescribed in control simulations previously devoid of a QBO, allowing us to isolate the transient atmospheric response to EQBO. Imposing EQBO accelerates the tropical upper-tropospheric wind, shifts the subtropical jet poleward, and attenuates the polar vortex. Interestingly, the latter is not entirely dependent on the statistically significant increase in SSW frequency due to EQBO. Corroborating observations, EQBO is associated with warmer surface temperatures over Asia and negative North Atlantic Oscillation (NAO) conditions. We then subsample the branched/control simulations based on which EQBO members have SSWs. The negative NAO response is primarily associated with more frequent SSWs, while the Asia warming develops irrespective of SSWs. These results have implications for wintertime predictability and clarify the pairing of particular QBO teleconnections with certain surface impacts.

Significance Statement

The QBO is one of the few parts of the Earth system that is predictable months in advance and that also elicits global effects on surface temperature, circulation, and precipitation. Unfortunately, climate models and operational forecast systems do not simulate the QBO well and it is not always clear how robust the global impacts of the QBO are. Here, we impose the QBO in idealized model simulations, which modulates wintertime surface temperature and precipitation over Asia, the North Atlantic, Europe, and Africa in a manner consistent with observations. This work substantiates the importance of climate and forecast models properly simulating the QBO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dillon Elsbury, dillon.elsbury@noaa.gov

Abstract

The quasi-biennial oscillation (QBO) is thought to influence boreal winter surface conditions over Asia and around the North Atlantic. Confirming if these responses are robust is complicated by the QBO having multiple pathways to influence surface conditions as well as internal variability. The reanalysis record suggests that sudden stratospheric warmings (SSWs), breakdowns of the polar vortex that can elicit persistent surface impacts, are more frequent during easterly QBO (EQBO). Hence, this modulated frequency of SSWs may account for some of the EQBO surface responses. However, many climate models do not reproduce this QBO–SSW relationship, perhaps because it is noise or because the model QBOs are deficient. We circumvent these issues by using an ensemble of fixed boundary condition branched simulations in which a realistic EQBO is prescribed in control simulations previously devoid of a QBO, allowing us to isolate the transient atmospheric response to EQBO. Imposing EQBO accelerates the tropical upper-tropospheric wind, shifts the subtropical jet poleward, and attenuates the polar vortex. Interestingly, the latter is not entirely dependent on the statistically significant increase in SSW frequency due to EQBO. Corroborating observations, EQBO is associated with warmer surface temperatures over Asia and negative North Atlantic Oscillation (NAO) conditions. We then subsample the branched/control simulations based on which EQBO members have SSWs. The negative NAO response is primarily associated with more frequent SSWs, while the Asia warming develops irrespective of SSWs. These results have implications for wintertime predictability and clarify the pairing of particular QBO teleconnections with certain surface impacts.

Significance Statement

The QBO is one of the few parts of the Earth system that is predictable months in advance and that also elicits global effects on surface temperature, circulation, and precipitation. Unfortunately, climate models and operational forecast systems do not simulate the QBO well and it is not always clear how robust the global impacts of the QBO are. Here, we impose the QBO in idealized model simulations, which modulates wintertime surface temperature and precipitation over Asia, the North Atlantic, Europe, and Africa in a manner consistent with observations. This work substantiates the importance of climate and forecast models properly simulating the QBO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dillon Elsbury, dillon.elsbury@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 10.133 MB)
Save
  • Andrews, M. B., J. R. Knight, A. A. Scaife, Y. Lu, T. Wu, L. J. Gray, and V. Schenzinger, 2019: Observed and simulated teleconnections between the stratospheric Quasi-Biennial Oscillation and Northern Hemisphere winter atmospheric circulation. J. Geophys. Res. Atmos., 124, 12191232, https://doi.org/10.1029/2018JD029368.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., J. Korshover, and G. F. Cotten, 1969: Quasi-biennial variations in the “centers of action”. Mon. Wea. Rev., 97, 867872, https://doi.org/10.1175/1520-0493(1969)097<0867:QVITOA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140 (678), 121, https://doi.org/10.1002/qj.2132.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., T. G. Shepherd, and J. F. Scinocca, 2010: Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67, 14021419, https://doi.org/10.1175/2009JAS3292.1.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and Coauthors, 2022: Teleconnections of the Quasi‐Biennial Oscillation in a multi‐model ensemble of QBO‐resolving models. Quart. J. Roy. Meteor. Soc., 148, 15681592, https://doi.org/10.1002/qj.4048.

    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., D. Barriopedro, J. M. Garrido-Perez, M. Abalos, A. de la Cámara, R. García-Herrera, N. Calvo, and C. Ordóñez, 2018: Stratospheric connection to the abrupt end of the 2016/2017 Iberian drought. Geophys. Res. Lett., 45, 12 63912 646, https://doi.org/10.1029/2018GL079802.

    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2016: The climate-system historical forecast project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 14131427, https://doi.org/10.1002/qj.2743.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 6376, https://doi.org/10.5194/essd-9-63-2017.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Chen, W., and T. Li, 2007: Modulation of Northern Hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J. Geophys. Res., 112, D20120, https://doi.org/10.1029/2007JD008611.

    • Search Google Scholar
    • Export Citation
  • Densmore, C. R., E. R. Sanabia, and B. S. Barrett, 2019: QBO influence on MJO amplitude over the maritime continent: Physical mechanisms and seasonality. Mon. Wea. Rev., 147, 389406, https://doi.org/10.1175/MWR-D-18-0158.1.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere‐troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. 1st ed. CRC Press, 456 pp.

  • Elsbury, D., Y. Peings, and G. Magnusdottir, 2021a: Variation in the Holton–Tan effect by longitude. Quart. J. Roy. Meteor. Soc., 147, 17671787, https://doi.org/10.1002/qj.3993.

    • Search Google Scholar
    • Export Citation
  • Elsbury, D., Y. Peings, and G. Magnusdottir, 2021b: CMIP6 models underestimate the Holton‐Tan effect. Geophys. Res. Lett., 48, e2021GL094083, https://doi.org/10.1029/2021GL094083.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, https://doi.org/10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • García-Franco, J. L., L. J. Gray, S. Osprey, R. Chadwick, and Z. Martin, 2022: The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model. Wea. Climate Dyn., 3, 825844, https://doi.org/10.5194/wcd-3-825-2022.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011a: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, https://doi.org/10.1175/2011JAS3665.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011b: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041, https://doi.org/10.1175/2011JAS3702.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, https://doi.org/10.1175/JAS-D-11-0209.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi‐biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 78557866, https://doi.org/10.1029/2018JD028724.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. J. Phipps, T. J. Dunkerton, M. P. Baldwin, E. F. Drysdale, and M. R. Allen, 2001: A data study of the influence of the equatorial upper stratosphere on Northern-Hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127, 19852003, https://doi.org/10.1002/qj.49712757607.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018.

    • Search Google Scholar
    • Export Citation
  • Hansen, F., K. Matthes, and L. J. Gray, 2013: Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry-climate model WACCM. J. Geophys. Res. Atmos., 118, 10 46410 474, https://doi.org/10.1002/jgrd.50812.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., P. Hitchcock, M. Hitchman, S. Yoden, H. Hendon, G. Kiladis, K. Kodera, and I. Simpson, 2021: The influence of the stratosphere on the tropical troposphere. J. Meteor. Soc. Japan, 99, 803845, https://doi.org/10.2151/jmsj.2021-040.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., S. Yoden, P. H. Haynes, V. Kumar, and S. Tegtmeier, 2021: An observational history of the direct influence of the stratospheric quasi-biennial oscillation on the tropical and subtropical upper troposphere and lower stratosphere. J. Meteor. Soc. Japan, 99, 239267, https://doi.org/10.2151/jmsj.2021-012.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., N. E. Trencham, and T. J. Galarneau Jr., 2023: QBO/solar influences on the tropical Madden‐Julian oscillation: A mechanism based on extratropical wave forcing in late fall and early winter. J. Geophys. Res. Atmos., 128, e2022JD037824, https://doi.org/10.1029/2022JD037824.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., and M. Takahashi, 2013: Connections between the stratospheric quasi-biennial oscillation and tropospheric circulation over Asia in northern autumn. J. Geophys. Res. Atmos., 118, 10 74010 753, https://doi.org/10.1002/jgrd.50827.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., M.  Takahashi, and H. Naoe, 2011: Relationship between the stratospheric quasi-biennial oscillation and tropospheric circulation in northern autumn. J. Geophys. Res., 116, D24115, https://doi.org/10.1029/2011JD016040.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., N. L. Tyrrell, and S. Rast, 2021: Sensitivity of QBO teleconnection to model circulation biases. Quart. J. Roy. Meteor. Soc., 147, 21472159, https://doi.org/10.1002/qj.4014.

    • Search Google Scholar
    • Export Citation
  • Kim, H., J. H. Richter, and Z. Martin, 2019: Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos., 124, 12 65512 666, https://doi.org/10.1029/2019JD031416.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., S. Yoden, and M. H. Hitchman, 2022: QBO and ENSO effects on the mean meridional circulation, polar vortex, subtropical westerly jets, and wave patterns during boreal winter. J. Geophys. Res. Atmos., 127, e2022JD036691, https://doi.org/10.1029/2022JD036691.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60, 124139, https://doi.org/10.2151/jmsj1965.60.1_124.

    • Search Google Scholar
    • Export Citation
  • Lawrence, Z. D., and Coauthors, 2022: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems. Wea. Climate Dyn., 3, 9771001, https://doi.org/10.5194/wcd-3-977-2022.

    • Search Google Scholar
    • Export Citation
  • Lawrence, Z. D., D. Elsbury, A. H. Butler, J. Perlwitz, J. R. Albers, L. M. Ciasto, and E. Ray, 2023: Evaluation of processes related to stratosphere-troposphere coupling in GEFSv12 subseasonal hindcasts. Mon. Wea. Rev., 151, 17351755, https://doi.org/10.1175/MWR-D-22-0283.1.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, 2011JD016317, https://doi.org/10.1029/2011JD016317.

    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn., 53, 16811695, https://doi.org/10.1007/s00382-019-04719-y.

    • Search Google Scholar
    • Export Citation
  • Lin, P., and Y. Ming, 2021: Enhanced climate response to ozone depletion from ozone‐circulation coupling. J. Geophys. Res. Atmos., 126, e2020JD034286, https://doi.org/10.1029/2020JD034286.

    • Search Google Scholar
    • Export Citation
  • Lu, H., T. J. Bracegirdle, T. Phillips, A. Bushell, and L. Gray, 2014: Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res. Atmos., 119, 28112830, https://doi.org/10.1002/2013JD021352.

    • Search Google Scholar
    • Export Citation
  • Lu, H., M. H. Hitchman, L. J. Gray, J. A. Anstey, and S. M. Osprey, 2020: On the role of Rossby wave breaking in the quasi‐biennial modulation of the stratospheric polar vortex during boreal winter. Quart. J. Roy. Meteor. Soc., 146, 19391959, https://doi.org/10.1002/qj.3775.

    • Search Google Scholar
    • Export Citation
  • Ma, T., W. Chen, J. Huangfu, L. Song, and Q. Cai, 2021: The observed influence of the quasi‐biennial oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. Int. J. Climatol., 41, 62546269, https://doi.org/10.1002/joc.7192.

    • Search Google Scholar
    • Export Citation
  • Ma, T., W. Chen, X. An, C. I. Garfinkel, and Q. Cai, 2023: Nonlinear effects of the stratospheric quasi‐biennial oscillation and ENSO on the North Atlantic winter atmospheric circulation. J. Geophys. Res. Atmos., 128, e2023JD039537, https://doi.org/10.1029/2023JD039537.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Martin, Z., C. Orbe, S. Wang, and A. Sobel, 2021a: The MJO–QBO relationship in a GCM with stratospheric nudging. J. Climate, 34, 46034624, https://doi.org/10.1175/JCLI-D-20-0636.1.

    • Search Google Scholar
    • Export Citation
  • Martin, Z., S.-W. Son, A. Butler, H. Hendon, H. Kim, A. Sobel, S. Yoden, and C. Zhang, 2021b: The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth Environ., 2, 477489, https://doi.org/10.1038/s43017-021-00173-9.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res., 115, D18110, https://doi.org/10.1029/2009JD013020.

    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Search Google Scholar
    • Export Citation
  • Nardi, K. M., C. F. Baggett, E. A. Barnes, E. D. Maloney, D. S. Harnos, and L. M. Ciasto, 2020: Skillful all-season S2S prediction of U.S. precipitation using the MJO and QBO. Wea. Forecasting, 35, 21792198, https://doi.org/10.1175/WAF-D-19-0232.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Noguchi, S., Y. Kuroda, K. Kodera, and S. Watanabe, 2020: Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett., 47, e2020GL088743, https://doi.org/10.1029/2020GL088743.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., A. Weisheimer, T. Woollings, L. J. Gray, and D. MacLeod, 2019: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal‐to‐noise paradox. Quart. J. Roy. Meteor. Soc., 145, 131146, https://doi.org/10.1002/qj.3413.

    • Search Google Scholar
    • Export Citation
  • Pang, B., R. Lu, and R. Ren, 2022: Impact of the Scandinavian pattern on long-lived cold surges over the South China Sea. J. Climate, 35, 17731785, https://doi.org/10.1175/JCLI-D-21-0607.1.

    • Search Google Scholar
    • Export Citation
  • Park, C.-H., S.-W. Son, Y. Lim, and J. Choi, 2022: Quasi‐biennial oscillation‐related surface air temperature change over the western North Pacific in late winter. Int. J. Climatol., 42, 43514359, https://doi.org/10.1002/joc.7470.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, https://doi.org/10.1002/qj.49710845604.

    • Search Google Scholar
    • Export Citation
  • Portal, A., P. Ruggieri, F. M. Palmeiro, J. García-Serrano, D. I. V. Domeisen, and S. Gualdi, 2022: Seasonal prediction of the boreal winter stratosphere. Climate Dyn., 58, 21092130, https://doi.org/10.1007/s00382-021-05787-9.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020a: How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Climate, 33, 89758996, https://doi.org/10.1175/JCLI-D-20-0024.1.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020b: Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Climate, 33, 47874813, https://doi.org/10.1175/JCLI-D-19-0663.1.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020c: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res. Atmos., 125, e2019JD031919, https://doi.org/10.1029/2019JD031919.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2021: Development of the extratropical response to the stratospheric quasi-biennial oscillation. J. Climate, 34, 72397255, https://doi.org/10.1175/JCLI-D-20-0960.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, R. R. Garcia, K. Matthes, and C. A. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 113, D08101, https://doi.org/10.1029/2007JD009269.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., J. A. Anstey, N. Butchart, Y. Kawatani, G. A. Meehl, S. Osprey, and I. R. Simpson, 2020: Progress in simulating the quasi‐biennial oscillation in CMIP models. J. Geophys. Res. Atmos., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., J. Dias, and G. N. Kiladis, 2020: The unique characteristics and potential mechanisms of the MJO‐QBO relationship. J. Geophys. Res. Atmos., 125, e2020JD033196, https://doi.org/10.1029/2020JD033196.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143 (702), 111, https://doi.org/10.1002/qj.2910.

    • Search Google Scholar
    • Export Citation
  • Sena, A. C. T., Y. Peings, and G. Magnusdottir, 2022: Effect of the quasi‐biennial oscillation on the Madden Julian oscillation teleconnections in the Southern Hemisphere. Geophys. Res. Lett., 49, e2021GL096105, https://doi.org/10.1029/2021GL096105.

    • Search Google Scholar
    • Export Citation
  • Serva, F., and Coauthors, 2022: The impact of the QBO on the region of the tropical tropopause in QBOi models: Present‐day simulations. Quart. J. Roy. Meteor. Soc., 148, 19451964, https://doi.org/10.1002/qj.4287.

    • Search Google Scholar
    • Export Citation
  • Silverman, V., N. Harnik, K. Matthes, S. W. Lubis, and S. Wahl, 2018: Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmos. Chem. Phys., 18, 66376659, https://doi.org/10.5194/acp-18-6637-2018.

    • Search Google Scholar
    • Export Citation
  • Silverman, V., S. W. Lubis, N. Harnik, and K. Matthes, 2021: A synoptic view of the onset of the midlatitude QBO signal. J. Atmos. Sci., 78, 37593780, https://doi.org/10.1175/JAS-D-20-0387.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., R. R. Neely, D. R. Marsh, and L. M. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., J. Anstey, S. Davis, I. Ivanciu, Y. Jia, D. McPhee, and R. Pilch Kedzierski, 2020: Zonal asymmetry of the QBO temperature signal in the tropical tropopause region. Geophys. Res. Lett., 47, e2020GL089533, https://doi.org/10.1029/2020GL089533.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, and E. K. M. Chang, 2018: Interannual modulation of Northern Hemisphere winter storm tracks by the QBO. Geophys. Res. Lett., 45, 27862794, https://doi.org/10.1002/2017GL076929.

    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., and L. J. Gray, 2014: How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci., 71, 391409, https://doi.org/10.1175/JAS-D-13-096.1.

    • Search Google Scholar
    • Export Citation
  • Wei, K., W. Chen, and R. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, 2007GL030478, https://doi.org/10.1029/2007GL030478.

    • Search Google Scholar
    • Export Citation
  • White, I. P., H. Lu, N. J. Mitchell, and T. Phillips, 2015: Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci., 72, 44874507, https://doi.org/10.1175/JAS-D-14-0358.1.

    • Search Google Scholar
    • Export Citation
  • White, I. P., H. Lu, N. J. Mitchell, and T. Phillips, 2016: Seasonal evolution of the QBO-induced wave forcing and circulation anomalies in the northern winter stratosphere. J. Geophys. Res. Atmos., 121, 10 41110 431, https://doi.org/10.1002/2015JD024507.

    • Search Google Scholar
    • Export Citation
  • Yamashita, Y., H. Akiyoshi, and M. Takahashi, 2011: Dynamical response in the Northern Hemisphere midlatitude and high-latitude winter to the QBO simulated by CCSR/NIES CCM. J. Geophys. Res., 116, D06118, https://doi.org/10.1029/2010JD015016.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, K., T. Nakamura, J. Ukita, and K. Hoshi, 2020: A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex. Atmos. Chem. Phys., 20, 51115127, https://doi.org/10.5194/acp-20-5111-2020.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Xie, Z. Ma, C. Zhang, M. Xu, T. Wang, and R. Zhang, 2019: Seasonal evolution of the quasi‐biennial oscillation impact on the Northern Hemisphere polar vortex in winter. J. Geophys. Res. Atmos., 124, 12 56812 586, https://doi.org/10.1029/2019JD030966.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., F. Xie, L. Yang, C. Sun, L. Wang, and R. Zhang, 2022: Modulation by the QBO of the relationship between the NAO and Northeast China temperature in late winter. J. Climate, 35, 79958011, https://doi.org/10.1175/JCLI-D-22-0353.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 364 364 128
Full Text Views 226 226 100
PDF Downloads 264 264 138