Decadal Trends in the Southern Ocean Meridional Eddy Heat Transport

Yinxing Liu aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
cAcademy of the Future Ocean, Ocean University of China, Qingdao, China

Search for other papers by Yinxing Liu in
Current site
Google Scholar
PubMed
Close
,
Zhiwei Zhang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Zhiwei Zhang in
Current site
Google Scholar
PubMed
Close
,
Qingguo Yuan aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China

Search for other papers by Qingguo Yuan in
Current site
Google Scholar
PubMed
Close
, and
Wei Zhao aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Meridional heat transport induced by oceanic mesoscale eddies (EHT) plays a significant role in the heat budget of the Southern Ocean (SO) but the decadal trends in EHT and its associated mechanisms are still obscure. Here, this scientific issue is investigated by combining concurrent satellite observations and Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) reanalysis data over the 24 years between 1993 and 2016. The results reveal that the surface EHTs from both satellite and ECCO2 data consistently show decadal poleward increasing trends in the SO, particularly in the latitude band of the Antarctic Circumpolar Current (ACC). In terms of average in the ACC band, the ECCO2-derived EHT over the upper 1000 m has a linear trend of 1.1 × 10−2 PW decade−1 or 16% per decade compared with its time-mean value of 0.07 PW. Diagnostic analysis based on “mixing length” theory suggests that the decadal strengthening of eddy kinetic energy (EKE) is the dominant mechanism for the increase in EHT in the SO. By performing an energy budget analysis, we further find that the decadal increase in EKE is mainly caused by the strengthened baroclinic instability of large-scale circulation that converts more available potential energy to EKE. For the strengthened baroclinic instability in the SO, it is attributed to the increasing large-scale wind stress work on the large-scale circulation corresponding to the positive phase of the Southern Annular Mode between 1993 and 2016. The decadal trends in EHT identified here may help understand decadal variations of heat storage and sea ice extent in the SO.

Significance Statement

Oceanic mesoscale-eddy-induced meridional heat transport (EHT) is a key process of heat redistribution in the Southern Ocean (SO), but the decadal variations of EHT and the associated mechanisms remain obscure. Here, by analyzing satellite and reanalysis data between 1993 and 2016, we find that the poleward EHT has significant decadal increasing trends in the SO, particularly in the Antarctic Circumpolar Current latitude band. Further analysis suggests that the increasing EHT is mainly caused by enhanced eddy kinetic energy converted by the strengthened baroclinic instability of large-scale circulation, which is attributed to the strengthening winds modulated by the Southern Annular Mode. The above findings may improve our understanding of the decadal variations of heat storage and sea ice extent in the SO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiwei Zhang, zzw330@ouc.edu.cn

Abstract

Meridional heat transport induced by oceanic mesoscale eddies (EHT) plays a significant role in the heat budget of the Southern Ocean (SO) but the decadal trends in EHT and its associated mechanisms are still obscure. Here, this scientific issue is investigated by combining concurrent satellite observations and Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) reanalysis data over the 24 years between 1993 and 2016. The results reveal that the surface EHTs from both satellite and ECCO2 data consistently show decadal poleward increasing trends in the SO, particularly in the latitude band of the Antarctic Circumpolar Current (ACC). In terms of average in the ACC band, the ECCO2-derived EHT over the upper 1000 m has a linear trend of 1.1 × 10−2 PW decade−1 or 16% per decade compared with its time-mean value of 0.07 PW. Diagnostic analysis based on “mixing length” theory suggests that the decadal strengthening of eddy kinetic energy (EKE) is the dominant mechanism for the increase in EHT in the SO. By performing an energy budget analysis, we further find that the decadal increase in EKE is mainly caused by the strengthened baroclinic instability of large-scale circulation that converts more available potential energy to EKE. For the strengthened baroclinic instability in the SO, it is attributed to the increasing large-scale wind stress work on the large-scale circulation corresponding to the positive phase of the Southern Annular Mode between 1993 and 2016. The decadal trends in EHT identified here may help understand decadal variations of heat storage and sea ice extent in the SO.

Significance Statement

Oceanic mesoscale-eddy-induced meridional heat transport (EHT) is a key process of heat redistribution in the Southern Ocean (SO), but the decadal variations of EHT and the associated mechanisms remain obscure. Here, by analyzing satellite and reanalysis data between 1993 and 2016, we find that the poleward EHT has significant decadal increasing trends in the SO, particularly in the Antarctic Circumpolar Current latitude band. Further analysis suggests that the increasing EHT is mainly caused by enhanced eddy kinetic energy converted by the strengthened baroclinic instability of large-scale circulation, which is attributed to the strengthening winds modulated by the Southern Annular Mode. The above findings may improve our understanding of the decadal variations of heat storage and sea ice extent in the SO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiwei Zhang, zzw330@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7931 MB)
Save
  • Abram, N. J., R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner, and M. H. England, 2014: Evolution of the Southern Annular Mode during the past millennium. Nat. Climate Change, 4, 564569, https://doi.org/10.1038/nclimate2235.

    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, https://doi.org/10.1175/JCLI-D-12-00759.1.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1979: Poleward heat flux and conversion of available potential energy in Drake Passage. J. Mar. Res., 37, 122.

  • Bryden, H. L., and R. A. Heath, 1985: Energetic eddies at the northern edge of the Antarctic Circumpolar Current in the Southwest Pacific. Prog. Oceanogr., 14, 6587, https://doi.org/10.1016/0079-6611(85)90006-0.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085, https://doi.org/10.1016/0198-0149(81)90048-0.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, https://doi.org/10.1175/JCLI-D-12-00504.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., and Coauthors, 2015: Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 30573081, https://doi.org/10.1175/JPO-D-14-0240.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., C. Provost, Y.-H. Park, N. Sennéchael, Z. Koenig, H. Sekma, G. Garric, and R. Bourdallé-Badie, 2014: Heat fluxes across the Antarctic Circumpolar Current in Drake Passage: Mean flow and eddy contributions. J. Geophys. Res. Oceans, 119, 63816402, https://doi.org/10.1002/2014JC010201.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and G. J. Marshall, 2020: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev.: Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.

    • Search Google Scholar
    • Export Citation
  • Foppert, A., K. A. Donohue, D. R. Watts, and K. L. Tracey, 2017: Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation. J. Geophys. Res. Oceans, 122, 69476964, https://doi.org/10.1002/2017JC012837.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and D. Menemenlis, 2008: Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319–337.

  • Frenger, I., M. Münnich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120, 74137449, https://doi.org/10.1002/2015JC011047.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, https://doi.org/10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003: Float observations of the Southern Ocean. Part II: Eddy fluxes. J. Phys. Oceanogr., 33, 11821196, https://doi.org/10.1175/1520-0485(2003)033<1182:FOOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., and S. P. Bishop, 2022: Surface divergent eddy heat fluxes and their impacts on mixed layer eddy‐mean flow interactions. J. Adv. Model. Earth Syst., 14, e2021MS002863, https://doi.org/10.1029/2021MS002863.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., S. Bachman, F. Bryan, and S. Bishop, 2022: Increasing trends in oceanic surface poleward eddy heat flux observed over the past three decades. Geophys. Res. Lett., 49, e2022GL099362, https://doi.org/10.1029/2022GL099362.

    • Search Google Scholar
    • Export Citation
  • Hausmann, U., and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I, 70, 6072, https://doi.org/10.1016/j.dsr.2012.08.005.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, https://doi.org/10.1175/2007JCLI1925.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsen, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans, 120, 257267, https://doi.org/10.1002/2014JC010470.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323, 243244, https://doi.org/10.1038/323243a0.

    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Cheng, and Y. Qi, 2019: SST front anchored mesoscale feature of surface wind in the southern Indian Ocean. Climate Dyn., 53, 477490, https://doi.org/10.1007/s00382-018-4598-0.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keffer, T., and G. Holloway, 1988: Estimating Southern Ocean eddy flux of heat and salt from satellite altimetry. Nature, 332, 624626, https://doi.org/10.1038/332624a0.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Laxenaire, R., S. Speich, and A. Stegner, 2020: Agulhas ring heat content and transport in the South Atlantic estimated by combining satellite altimetry and Argo profiling floats data. J. Geophys. Res. Oceans, 125, e2019JC015511, https://doi.org/10.1029/2019JC015511.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1996: Stochastic models of chaotic systems. Physica D, 98, 481491, https://doi.org/10.1016/0167-2789(96)00107-8.

  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Martínez‐Moreno, J., A. M. Hogg, A. E. Kiss, N. C. Constantinou, and A. K. Morrison, 2019: Kinetic energy of eddy‐like features from sea surface altimetry. J. Adv. Model. Earth Syst., 11, 30903105, https://doi.org/10.1029/2019MS001769.

    • Search Google Scholar
    • Export Citation
  • Martínez‐Moreno, J., A. M. Hogg, M. H. England, N. C. Constantinou, A. E. Kiss, and A. K. Morrison, 2021: Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Climate Change, 11, 397403, https://doi.org/10.1038/s41558-021-01006-9.

    • Search Google Scholar
    • Export Citation
  • McKee, D. C., D. G. Martinson, and O. Schofield, 2019: Origin and attenuation of mesoscale structure in circumpolar deep water intrusions to an Antarctic shelf. J. Phys. Oceanogr., 49, 12931318, https://doi.org/10.1175/JPO-D-18-0133.1.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J., N. L. Bindoff, and J. L. Roberts, 2007: On the total, mean, and eddy heat and freshwater transports in the Southern Hemisphere of a ⅛° × ⅛° global ocean model. J. Phys. Oceanogr., 37, 277295, https://doi.org/10.1175/JPO3012.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005a: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2005b: NASA supercomputer improves prospects for ocean climate research. Eos, Trans. Amer. Geophys. Union, 86, 8996, https://doi.org/10.1029/2005EO090002.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J.-M. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Toulouse, France, 13–21.

  • Meredith, M. P., A. C. Naveira Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Miao, M., and Coauthors, 2021: On contributions of multiscale dynamic processes to the steric height in the northeastern South China Sea as revealed by moored observations. Geophys. Res. Lett., 48, e2021GL093829, https://doi.org/10.1029/2021GL093829.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., S. M. Griffies, M. Winton, W. G. Anderson, and J. L. Sarmiento, 2016: Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Climate, 29, 20592075, https://doi.org/10.1175/JCLI-D-15-0579.1.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., S. J. Worley, and T. Whitworth III, 1985: Methods for making point estimates of eddy heat flux as applied to the Antarctic Circumpolar Current. J. Geophys. Res., 90, 33053324, https://doi.org/10.1029/JC090iC02p03305.

    • Search Google Scholar
    • Export Citation
  • Patara, L., C. W. Böning, and A. Biastoch, 2016: Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett., 43, 45174523, https://doi.org/10.1002/2016GL069026.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J. Climate, 30, 95919605, https://doi.org/10.1175/JCLI-D-17-0397.1.

    • Search Google Scholar
    • Export Citation
  • Rackow, T., S. Danilov, H. F. Goessling, H. H. Hellmer, D. V. Sein, T. Semmler, D. Sidorenko, and T. Jung, 2022: Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat. Commun., 13, 637, https://doi.org/10.1038/s41467-022-28259-y.

    • Search Google Scholar
    • Export Citation
  • Rai, S., M. Hecht, M. Maltrud, and H. Aluie, 2021: Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv., 7, eabf4920, https://doi.org/10.1126/sciadv.abf4920.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Sciremammano, F., Jr., 1980: The nature of the poleward heat flux due to low-frequency current fluctuations in Drake Passage. J. Phys. Oceanogr., 10, 843852, https://doi.org/10.1175/1520-0485(1980)010<0843:TNOTPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Search Google Scholar
    • Export Citation
  • Souza, J. M. A. C., C. de Boyer Montégut, C. Cabanes, and P. Klein, 2011: Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophys. Res. Lett., 38, L21602, https://doi.org/10.1029/2011GL049359.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum‐Antarctic shoreward heat transport derived from an eddy‐and tide‐resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Search Google Scholar
    • Export Citation
  • Sun, B., C. Liu, and F. Wang, 2019: Global meridional eddy heat transport inferred from Argo and altimetry observations. Sci. Rep., 9, 1345, https://doi.org/10.1038/s41598-018-38069-2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212, https://doi.org/10.1112/plms/s2-20.1.196.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci., 7, 879884, https://doi.org/10.1038/ngeo2289.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L.-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, https://doi.org/10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., L.-L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801, https://doi.org/10.1007/s10236-010-0288-0.

    • Search Google Scholar
    • Export Citation
  • Walkden, G. J., K. J. Heywood, and D. P. Stevens, 2008: Eddy heat fluxes from direct current measurements of the Antarctic polar front in shag rocks passage. Geophys. Res. Lett., 35, L06602, https://doi.org/10.1029/2007GL032767.

    • Search Google Scholar
    • Export Citation
  • Wang, X., S. Zhang, X. Lin, B. Qiu, and L. Yu, 2021: Characteristics of 3‐dimensional structure and heat budget of mesoscale eddies in the South Atlantic Ocean. J. Geophys. Res. Oceans, 126, e2020JC016922, https://doi.org/10.1029/2020JC016922.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Zhang, Z. Guan, B. Sun, X. Yang, and C. Liu, 2015: An atmospheric origin of the multi-decadal bipolar seesaw. Sci. Rep., 5, 8909, https://doi.org/10.1038/srep08909.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., K. L. Tracey, K. A. Donohue, and T. K. Chereskin, 2016: Estimates of eddy heat flux crossing the Antarctic Circumpolar Current from observations in Drake Passage. J. Phys. Oceanogr., 46, 21032122, https://doi.org/10.1175/JPO-D-16-0029.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104, 13 23513 249, https://doi.org/10.1029/1999JC900062.

    • Search Google Scholar
    • Export Citation
  • Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang, 2018: Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. J. Geophys. Res. Oceans, 123, 66536669, https://doi.org/10.1029/2018JC014081.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, https://doi.org/10.1175/JPO-D-14-0043.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, https://doi.org/10.1175/JPO-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., 2020: MITgcm model setup and output for “Improved representation of river runoff in ECCO simulations: Implementation, evaluation, and impacts to coastal plume regions”, version 1. Zenodo, accessed 16 October 2020, https://doi.org/10.5281/zenodo.4095613.

  • Zhang, Z., Y. Zhong, J. Tian, Q. Yang, and W. Zhao, 2014: Estimation of eddy heat transport in the global ocean from Argo data. Acta Oceanol. Sin., 33, 4247, https://doi.org/10.1007/s13131-014-0421-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2023: Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nat. Commun., 14, 1335, https://doi.org/10.1038/s41467-023-36991-2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., B. Qiu, X. Lin, and F. Wang, 2018: Interannual eddy kinetic energy modulations in the Agulhas return current. J. Geophys. Res. Oceans, 123, 64496462, https://doi.org/10.1029/2018JC014333.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Y. Li, F. Wang, and M. Lv, 2022: Weak mesoscale variability in the Optimum Interpolation Sea Surface Temperature (OISST)-AVHRR-only version 2 data before 2007. Remote Sens., 14, 409, https://doi.org/10.3390/rs14020409.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 604 604 192
Full Text Views 300 300 97
PDF Downloads 325 325 128