Changes in the Typhoon Intensity under a Warming Climate: A Numerical Study of Typhoon Mangkhut

Hong Wang aState Key Laboratory of Internet of Things for Smart City and Department of Ocean Science and Technology, University of Macau, Macau, China
bCenter for Ocean Research in Hong Kong and Macau, Macau, China

Search for other papers by Hong Wang in
Current site
Google Scholar
PubMed
Close
,
Liang Gao aState Key Laboratory of Internet of Things for Smart City and Department of Ocean Science and Technology, University of Macau, Macau, China
bCenter for Ocean Research in Hong Kong and Macau, Macau, China

Search for other papers by Liang Gao in
Current site
Google Scholar
PubMed
Close
,
Lei Zhu aState Key Laboratory of Internet of Things for Smart City and Department of Ocean Science and Technology, University of Macau, Macau, China
bCenter for Ocean Research in Hong Kong and Macau, Macau, China

Search for other papers by Lei Zhu in
Current site
Google Scholar
PubMed
Close
,
Lulu Zhang cSchool of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Lulu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jiahao Wu aState Key Laboratory of Internet of Things for Smart City and Department of Ocean Science and Technology, University of Macau, Macau, China
bCenter for Ocean Research in Hong Kong and Macau, Macau, China

Search for other papers by Jiahao Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurately assessing cyclone intensity changes due to global warming is crucial for predicting and mitigating sequential hazards. This study develops a high-resolution, fully coupled air–sea model to investigate the impact of global warming on Supertyphoon Mangkhut (2018). A numerical sensitivity analysis is conducted using the pseudo–global warming (PGW) technique based on multiple global climate models (GCMs) from phase 6 of Coupled Model Intercomparison Project (CMIP6). Under ocean warming scenarios, the increasing average sea surface temperature (SST) by 2.26°, 2.44°, 3.45°, and 4.53°C results in reductions in the minimum sea level pressure by 9.2, 10.6, 15.7, and 19.4 hPa, respectively, compared to the original state of Typhoon Mangkhut. Rising SST increases the turbulent heat flux; to be specific, an average SST increase of 2.26°–4.53°C changes the turbulent heat flux into 177%–272% of the original value. Besides, stronger winds enhance SST cooling, including upwelling and entrainment, leading to an increase in the mixed layer depth (MLD). Tropical cyclone heat potential (TCHP) tends to be enhanced under the combined influences as the SST rises. An average increase in the SST of 2.26°, 2.44°, 3.45°, and 4.53°C leads to an increase in the TCHP of 9.94%, 9.85%, 14.67%, and 15.30%, respectively. However, future changes in atmospheric temperature and humidity will moderate typhoon intensification induced by ocean warming. Considering atmospheric conditions, the maximum wind speed decreases by approximately 10% compared to only considering ocean warming. Nevertheless, typhoon intensity is projected to strengthen under future climate change.

Significance Statement

This study examines the role of global warming in typhoon intensity and the response of typhoon events to changes in the oceanic thermal structure. Sensitivity experiments considering future warming climates are conducted using a fully coupled air–sea numerical model. An average increase in sea surface temperature (SST) by 4.53°C can lead to a reduction in the minimum sea level pressure by 19.4 hPa. Ocean warming enhances oceanic mixing, potentially increasing the availability of heat energy for typhoon’s development (i.e., an average increase in SST by 4.53°C leads to a 15.30% increase in heat energy). However, future changes in atmospheric temperature and humidity will moderate the intensification of typhoons induced by ocean warming. These results are expected to provide information for assessing the future changes in typhoon intensity under a warming climate, which is important for predicting and reducing sequential risks.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Gao, gaoliang@um.edu.mo

Abstract

Accurately assessing cyclone intensity changes due to global warming is crucial for predicting and mitigating sequential hazards. This study develops a high-resolution, fully coupled air–sea model to investigate the impact of global warming on Supertyphoon Mangkhut (2018). A numerical sensitivity analysis is conducted using the pseudo–global warming (PGW) technique based on multiple global climate models (GCMs) from phase 6 of Coupled Model Intercomparison Project (CMIP6). Under ocean warming scenarios, the increasing average sea surface temperature (SST) by 2.26°, 2.44°, 3.45°, and 4.53°C results in reductions in the minimum sea level pressure by 9.2, 10.6, 15.7, and 19.4 hPa, respectively, compared to the original state of Typhoon Mangkhut. Rising SST increases the turbulent heat flux; to be specific, an average SST increase of 2.26°–4.53°C changes the turbulent heat flux into 177%–272% of the original value. Besides, stronger winds enhance SST cooling, including upwelling and entrainment, leading to an increase in the mixed layer depth (MLD). Tropical cyclone heat potential (TCHP) tends to be enhanced under the combined influences as the SST rises. An average increase in the SST of 2.26°, 2.44°, 3.45°, and 4.53°C leads to an increase in the TCHP of 9.94%, 9.85%, 14.67%, and 15.30%, respectively. However, future changes in atmospheric temperature and humidity will moderate typhoon intensification induced by ocean warming. Considering atmospheric conditions, the maximum wind speed decreases by approximately 10% compared to only considering ocean warming. Nevertheless, typhoon intensity is projected to strengthen under future climate change.

Significance Statement

This study examines the role of global warming in typhoon intensity and the response of typhoon events to changes in the oceanic thermal structure. Sensitivity experiments considering future warming climates are conducted using a fully coupled air–sea numerical model. An average increase in sea surface temperature (SST) by 4.53°C can lead to a reduction in the minimum sea level pressure by 19.4 hPa. Ocean warming enhances oceanic mixing, potentially increasing the availability of heat energy for typhoon’s development (i.e., an average increase in SST by 4.53°C leads to a 15.30% increase in heat energy). However, future changes in atmospheric temperature and humidity will moderate the intensification of typhoons induced by ocean warming. These results are expected to provide information for assessing the future changes in typhoon intensity under a warming climate, which is important for predicting and reducing sequential risks.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Gao, gaoliang@um.edu.mo
Save
  • Balaguru, K., G. R. Foltz, L. R. Leung, and K. A. Emanuel, 2016: Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat. Commun., 7, 13670, https://doi.org/10.1038/ncomms13670.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602, https://doi.org/10.1175/3240.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wang, C.-Y. Tam, N.-C. Lau, D.-S. D. Lau, and H.-Y. Mok, 2020: Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method. Sci. Rep., 10, 1965, https://doi.org/10.1038/s41598-020-58824-8.

    • Search Google Scholar
    • Export Citation
  • Chih, C.-H., and C.-C. Wu, 2020: Exploratory analysis of upper-ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific. J. Climate, 33, 10311050, https://doi.org/10.1175/JCLI-D-19-0305.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, https://doi.org/10.1175/BAMS-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Delfino, R. J., P. L. Vidale, G. Bagtasa, and K. Hodges, 2023: Response of damaging Philippines tropical cyclones to a warming climate using the pseudo global warming approach. Climate Dyn., 61, 34993523, https://doi.org/10.1007/s00382-023-06742-6.

    • Search Google Scholar
    • Export Citation
  • Dong, W., and Coauthors, 2021: Observational and modeling studies of oceanic responses and feedbacks to Typhoons Hato and Mangkhut over the northern shelf of the South China Sea. Prog. Oceanogr., 191, 102507, https://doi.org/10.1016/j.pocean.2020.102507.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, https://doi.org/10.1038/326483a0.

  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, https://doi.org/10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., L. K. Shay, J. K. Brewster, and W. J. Teague, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945, https://doi.org/10.1175/2010MWR3104.1.

    • Search Google Scholar
    • Export Citation
  • Hegde, A. K., R. Kawamura, and T. Kawano, 2016: Evidence for the significant role of sea surface temperature distributions over remote tropical oceans in tropical cyclone intensity. Climate Dyn., 47, 623635, https://doi.org/10.1007/s00382-015-2859-8.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, https://doi.org/10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. Final Rep. ICCAP 4346, 15 pp.

  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Leyba, I. M., S. A. Solman, and M. Saraceno, 2019: Trends in sea surface temperature and air–sea heat fluxes over the South Atlantic Ocean. Climate Dyn., 53, 41414153, https://doi.org/10.1007/s00382-019-04777-2.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, https://doi.org/10.1175/2009MWR2713.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Lien, 2014: “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, https://doi.org/10.1002/2014GL061281.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2020: Basin-wide responses of the South China Sea environment to super Typhoon Mangkhut (2018). Sci. Total Environ., 731, 139093, https://doi.org/10.1016/j.scitotenv.2020.139093.

    • Search Google Scholar
    • Export Citation
  • Llovel, W., and L. Terray, 2016: Observed southern upper-ocean warming over 2005–2014 and associated mechanisms. Environ. Res. Lett., 11, 124023, https://doi.org/10.1088/1748-9326/11/12/124023.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, https://doi.org/10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Lu, X., H. Yu, M. Ying, B. Zhao, S. Zhang, L. Lin, L. Bai, and R. Wan, 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38, 690699, https://doi.org/10.1007/s00376-020-0211-7.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334337, https://doi.org/10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv., 1, e1500014, https://doi.org/10.1126/sciadv.1500014.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 13831413, https://doi.org/10.1029/2017MS001217.

    • Search Google Scholar
    • Export Citation
  • Nakamura, R., and M. Mäll, 2021: Pseudo global warming sensitivity experiments of subtropical cyclone Anita (2010) under RCP 8.5 scenario. J. Geophys. Res. Atmos., 126, e2021JD035261, https://doi.org/10.1029/2021JD035261.

    • Search Google Scholar
    • Export Citation
  • Nakamura, R., T. Shibayama, M. Esteban, and T. Iwamoto, 2016: Future typhoon and storm surges under different global warming scenarios: Case study of Typhoon Haiyan (2013). Nat. Hazards, 82, 16451681, https://doi.org/10.1007/s11069-016-2259-3.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, https://doi.org/10.1029/2008GL034147.

    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., J. C. Warner, B. Armstrong, J. B. Zambon, and R. He, 2012: Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modell., 4344, 112137, https://doi.org/10.1016/j.ocemod.2011.12.008.

    • Search Google Scholar
    • Export Citation
  • Parker, C. L., C. L. Bruyère, P. A. Mooney, and A. H. Lynch, 2018: The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia. Climate Dyn., 51, 34673485, https://doi.org/10.1007/s00382-018-4091-9.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the western North Pacific Ocean. Geophys. Res. Lett., 40, 46804684, https://doi.org/10.1002/grl.50548.

    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., D. M. Oliveira, R. P. da Rocha, and L. M. M. Dutra, 2019: Subtropical cyclone Anita’s potential to tropical transition under warmer sea surface temperature scenarios. Geophys. Res. Lett., 46, 84848489, https://doi.org/10.1029/2019GL083415.

    • Search Google Scholar
    • Export Citation
  • Ren, F., B. Gleason, and D. Easterling, 2002: Typhoon impacts on China’s precipitation during 1957-1996. Adv. Atmos. Sci., 19, 943952, https://doi.org/10.1007/s00376-002-0057-1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, https://doi.org/10.1016/j.jhydrol.2006.07.023.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., P. G. Fogli, K. A. Reed, S. Gualdi, S. Masina, and A. Navarra, 2017: Tropical cyclone interaction with the ocean: The role of high-frequency (subdaily) coupled processes. J. Climate, 30, 145162, https://doi.org/10.1175/JCLI-D-16-0292.1.

    • Search Google Scholar
    • Export Citation
  • Sellar, A. A., and Coauthors, 2020: Implementation of U.K. Earth system models for CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001946, https://doi.org/10.1029/2019MS001946.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y.-H., S. Jan, D. E. Dietrich, I.-I. Lin, Y.-T. Chang, and T.-Y. Tang, 2010: Modeled oceanic response and sea surface cooling to Typhoon Kai-Tak. Terr. Atmos. Ocean. Sci., 21, 8598, https://doi.org/10.3319/TAO.2009.06.08.02(IWNOP).

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., K. A. Emanuel, M. Lengaigne, J. Vialard, and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, https://doi.org/10.1002/2014MS000327.

    • Search Google Scholar
    • Export Citation
  • Wada, A., H. Niino, and H. Nakano, 2009: Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). J. Oceanogr., 65, 373396, https://doi.org/10.1007/s10872-009-0034-8.

    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Search Google Scholar
    • Export Citation
  • Wei, J., X. Liu, and D.-X. Wang, 2014: Dynamic and thermal response of the Kuroshio to Typhoon Megi (2004). Geophys. Res. Lett., 41, 84958502, https://doi.org/10.1002/2014GL061706.

    • Search Google Scholar
    • Export Citation
  • Wu, R., H. Zhang, D. Chen, C. Li, and J. Lin, 2018: Impact of Typhoon Kalmaegi (2014) on the South China Sea: Simulations using a fully coupled atmosphere-ocean-wave model. Ocean Modell., 131, 132151, https://doi.org/10.1016/j.ocemod.2018.08.004.

    • Search Google Scholar
    • Export Citation
  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287301, https://doi.org/10.1175/JTECH-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014: Investigation of Hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn., 64, 15351554, https://doi.org/10.1007/s10236-014-0777-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., H. He, W.-Z. Zhang, and D. Tian, 2021: Upper ocean response to tropical cyclones: A review. Geosci. Lett., 8, 1, https://doi.org/10.1186/s40562-020-00170-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Wang, W. Zhang, and J. Xu, 2019: Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: A numerical study. J. Geophys. Res. Atmos., 124, 13 73113 749, https://doi.org/10.1029/2019JD031377.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 608 608 256
Full Text Views 142 142 95
PDF Downloads 205 205 141