Anthropogenic Changes in Interannual-to-Decadal Climate Variability in CMIP6 Multiensemble Simulations

Arthur Coquereau aLaboratoire d’Océanographie Physique et Spatiale, University Brest CNRS IRD Ifremer, Brest, France

Search for other papers by Arthur Coquereau in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7034-6857
,
Florian Sévellec aLaboratoire d’Océanographie Physique et Spatiale, University Brest CNRS IRD Ifremer, Brest, France
bODYSSEY Project-Team, INRIA CNRS, Brest, France

Search for other papers by Florian Sévellec in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck aLaboratoire d’Océanographie Physique et Spatiale, University Brest CNRS IRD Ifremer, Brest, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
,
Joël J.-M. Hirschi cMarine Systems Modelling, National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Joël J.-M. Hirschi in
Current site
Google Scholar
PubMed
Close
, and
Antoine Hochet aLaboratoire d’Océanographie Physique et Spatiale, University Brest CNRS IRD Ifremer, Brest, France

Search for other papers by Antoine Hochet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As well as having an impact on the background state of the climate, global warming due to human activities could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways for the twenty-first century. Our results suggest significant changes in natural climate variability and point to two distinct regimes driving these changes. The first is a decrease in internal variability of surface air temperature at high latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of sea ice edges, which we show to be an important component of internal variability. The second is an intensification of the interannual variability of surface air temperature and precipitation at low latitudes, which appears to be associated with El Niño–Southern Oscillation (ENSO). This second regime is particularly alarming because it may contribute to making the climate more unstable and less predictable, with a significant impact on human societies and ecosystems.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arthur Coquereau, arthur.coquereau@univ-brest.fr

Abstract

As well as having an impact on the background state of the climate, global warming due to human activities could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways for the twenty-first century. Our results suggest significant changes in natural climate variability and point to two distinct regimes driving these changes. The first is a decrease in internal variability of surface air temperature at high latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of sea ice edges, which we show to be an important component of internal variability. The second is an intensification of the interannual variability of surface air temperature and precipitation at low latitudes, which appears to be associated with El Niño–Southern Oscillation (ENSO). This second regime is particularly alarming because it may contribute to making the climate more unstable and less predictable, with a significant impact on human societies and ecosystems.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arthur Coquereau, arthur.coquereau@univ-brest.fr
Save
  • Baede, A. P. M., E. Ahlonsou, Y. Ding, and D. S. Schimel, 2001: The climate system: An overview. Climate Change 2001: Impacts, Adaptation and Vulnerability, B. Bolin and S. Pollonais, Eds., Cambridge University Press, 87–98.

  • Bathiany, S., V. Dakos, M. Scheffer, and T. M. Lenton, 2018: Climate models predict increasing temperature variability in poor countries. Sci. Adv., 4, eaar5809, https://doi.org/10.1126/sciadv.aar5809.

    • Search Google Scholar
    • Export Citation
  • Bock, L., and Coauthors, 2020: Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321.

    • Search Google Scholar
    • Export Citation
  • Brunner, L., A. G. Pendergrass, F. Lehner, A. L. Merrifield, R. Lorenz, and R. Knutti, 2020: Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn., 11, 9951012, https://doi.org/10.5194/esd-11-995-2020.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, https://doi.org/10.1038/nclimate2492.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, G. Wang, A. Santoso, L. Wu, and K. Yang, 2022: Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Climate Change, 12, 228231, https://doi.org/10.1038/s41558-022-01282-z.

    • Search Google Scholar
    • Export Citation
  • Callahan, C. W., C. Chen, M. Rugenstein, J. Bloch-Johnson, S. Yang, and E. J. Moyer, 2021: Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Climate Change, 11, 752757, https://doi.org/10.1038/s41558-021-01099-2.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., A. Cherchi, and Y. Kosaka, Eds., 2021: Annex IV: Modes of variability. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 2153–2192.

  • Chen, D., and Coauthors, 2021: Framing, context, and methods. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 147–286.

  • Coburn, J., and S. C. Pryor, 2023: Evolution of the internal climate modes under future warming. J. Climate, 36, 511529, https://doi.org/10.1175/JCLI-D-22-0200.1.

    • Search Google Scholar
    • Export Citation
  • Dee, L. E., D. Okamtoto, A. Gårdmark, J. M. Montoya, and S. J. Miller, 2020: Temperature variability alters the stability and thresholds for collapse of interacting species. Philos. Trans. Roy. Soc., B375, 20190457, https://doi.org/10.1098/rstb.2019.0457.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Search Google Scholar
    • Export Citation
  • Fredriksen, H.-B., J. Berner, A. C. Subramanian, and A. Capotondi, 2020: How does El Niño–Southern Oscillation change under global warming—A first look at CMIP6. Geophys. Res. Lett., 47, e2020GL090640, https://doi.org/10.1029/2020GL090640.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hou, M., and Y. Tang, 2022: Recent progress in simulating two types of ENSO – from CMIP5 to CMIP6. Front. Mar. Sci., 9, 986780, https://doi.org/10.3389/fmars.2022.986780.

    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and Coauthors, 2023: xarray. Zenodo, accessed 1 October 2023, https://doi.org/10.5281/zenodo.8379187.

  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, https://doi.org/10.1007/s10584-010-9800-2.

  • Lee, J.-Y., and Coauthors, 2021: Future global climate: Scenario-based projections and near-term information. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 553–672.

  • Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn., 11, 491508, https://doi.org/10.5194/esd-11-491-2020.

    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Search Google Scholar
    • Export Citation
  • Maher, N., S. Milinski, and R. Ludwig, 2021: Large ensemble climate model simulations: Introduction, overview, and future prospects for utilising multiple types of large ensemble. Earth Syst. Dyn., 12, 401418, https://doi.org/10.5194/esd-12-401-2021.

    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2023: The future of the El Niño–Southern Oscillation: Using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn., 14, 413431, https://doi.org/10.5194/esd-14-413-2023.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.-F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.

    • Search Google Scholar
    • Export Citation
  • Milinski, S., N. Maher, and D. Olonscheck, 2020: How large does a large ensemble need to be? Earth Syst. Dyn., 11, 885901, https://doi.org/10.5194/esd-11-885-2020.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., A. P. Schurer, L. Lücke, and G. C. Hegerl, 2021: Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun., 12, 7237, https://doi.org/10.1038/s41467-021-27515-x.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., and Coauthors, 2023: The new Max Planck institute grand ensemble with CMIP6 forcing and high-frequency model output. J. Adv. Model. Earth Syst., 15, e2023MS003790, https://doi.org/10.1029/2023MS003790.

    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep., 7, 12256, https://doi.org/10.1038/s41598-017-12520-2.

    • Search Google Scholar
    • Export Citation
  • Rehfeld, K., R. Hébert, J. M. Lora, M. Lofverstrom, and C. M. Brierley, 2020: Variability of surface climate in simulations of past and future. Earth Syst. Dyn., 11, 447468, https://doi.org/10.5194/esd-11-447-2020.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, D. McNeall, and M. Collins, 2015: Quantifying the likelihood of a continued hiatus in global warming. Nat. Climate Change, 5, 337342, https://doi.org/10.1038/nclimate2531.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and S. S. Drijfhout, 2018: A novel probabilistic forecast system predicting anomalously warm 2018-2022 reinforcing the long-term global warming trend. Nat. Commun., 9, 3024, https://doi.org/10.1038/s41467-018-05442-8.

    • Search Google Scholar
    • Export Citation
  • Shi, J., Z. Tian, X. Lang, and D. Jiang, 2023: Projected changes in the interannual variability of surface air temperature using CMIP6 simulations. Climate Dyn., 62, 431446, https://doi.org/10.1007/s00382-023-06923-3.

    • Search Google Scholar
    • Export Citation
  • Shin, N.-Y., J.-S. Kug, M. F. Stuecker, F.-F. Jin, A. Timmermann, and G.-I. Kim, 2022: More frequent central Pacific El Niño and stronger eastern Pacific El Niño in a warmer climate. npj Climate Atmos. Sci., 5, 101, https://doi.org/10.1038/s41612-022-00324-9.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Search Google Scholar
    • Export Citation
  • Zhuang, J., and Coauthors, 2023: pangeo-data/xESMF: v0.8.2. Zenodo, accessed 1 October 2023, https://doi.org/10.5281/zenodo.8356796.

  • Ziehn, T., and Coauthors, 2020: The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisphere Earth Syst. Sci., 70, 193214, https://doi.org/10.1071/ES19035.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 589 589 211
Full Text Views 241 241 96
PDF Downloads 314 314 139