ICESat-2 Shows Sea Ice Leads Have Little Overall Effects on the Arctic Cloudiness in Cold Months

Zheng Liu aPolar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Zheng Liu in
Current site
Google Scholar
PubMed
Close
and
Axel Schweiger aPolar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Axel Schweiger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of leads in Arctic sea ice on clouds is a potentially important climate feedback. We use observations of clouds and leads from the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to study the effects of leads on clouds. Both leads and clouds are strongly forced by synoptic weather conditions, with more clouds over both leads and sea ice at lower sea level pressure. Contrary to previous studies, we find that the overall lead effect on low-level cloud cover is −0.02, a weak cloud dissipating effect in cold months, after the synoptic forcing influence is removed. This is due to compensating contributions from the cloud dissipating effect by newly frozen leads under high pressure systems and the cloud enhancing effect by newly open leads under low pressure system. The lack of proper representation of lead effect on clouds in current climate models and reanalyses may impact their performance in winter months, such as in sea ice growth and Arctic cyclone development.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zheng Liu, liuzheng@apl.uw.edu

Abstract

The effect of leads in Arctic sea ice on clouds is a potentially important climate feedback. We use observations of clouds and leads from the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to study the effects of leads on clouds. Both leads and clouds are strongly forced by synoptic weather conditions, with more clouds over both leads and sea ice at lower sea level pressure. Contrary to previous studies, we find that the overall lead effect on low-level cloud cover is −0.02, a weak cloud dissipating effect in cold months, after the synoptic forcing influence is removed. This is due to compensating contributions from the cloud dissipating effect by newly frozen leads under high pressure systems and the cloud enhancing effect by newly open leads under low pressure system. The lack of proper representation of lead effect on clouds in current climate models and reanalyses may impact their performance in winter months, such as in sea ice growth and Arctic cyclone development.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zheng Liu, liuzheng@apl.uw.edu
Save
  • Alam, A., and J. Curry, 1995: Lead-induced atmospheric circulations. J. Geophys. Res., 100, 46434651, https://doi.org/10.1029/94JC02562.

    • Search Google Scholar
    • Export Citation
  • Alam, A., and J. A. Curry, 1997: Determination of surface turbulent fluxes over leads in Arctic sea ice. J. Geophys. Res., 102, 33313343, https://doi.org/10.1029/96JC03606.

    • Search Google Scholar
    • Export Citation
  • Alam, A., and J. A. Curry, 1998: Evolution of new ice and turbulent fluxes over freezing winter leads. J. Geophys. Res., 103, 15 78315 802, https://doi.org/10.1029/98JC01188.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and B. A. Cash, 1999: Convective heat transfer over wintertime leads and polynyas. J. Geophys. Res., 104, 25 72125 734, https://doi.org/10.1029/1999JC900241.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., R. G. Crane, A. Schweiger, and J. Newell, 1987: Arctic cloudiness in spring from satellite imagery. J. Climatol., 7, 423451, https://doi.org/10.1002/joc.3370070502.

    • Search Google Scholar
    • Export Citation
  • Barton, N. P., S. A. Klein, J. S. Boyle, and Y. Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, https://doi.org/10.1029/2012JD017589.

    • Search Google Scholar
    • Export Citation
  • Barton, N. P., S. A. Klein, and J. S. Boyle, 2014: On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability. J. Climate, 27, 72507269, https://doi.org/10.1175/JCLI-D-14-00126.1.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., R. W. Fett, and R. E. Englebretson, 1997: Numerical simulation of cloud plumes emanating from Arctic leads. J. Geophys. Res., 102, 16 52916 544, https://doi.org/10.1029/97JD00339.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., J. E. Kay, H. Chepfer, J. M. English, and G. de Boer, 2012: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385.

    • Search Google Scholar
    • Export Citation
  • Clancy, R., C. M. Bitz, E. Blanchard-Wrigglesworth, M. C. McGraw, and S. M. Cavallo, 2022: A cyclone-centered perspective on the drivers of asymmetric patterns in the atmosphere and sea ice during Arctic cyclones. J. Climate, 35, 7389, https://doi.org/10.1175/JCLI-D-21-0093.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 49774993, https://doi.org/10.1175/JCLI-D-15-0755.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and E. Tziperman, 2015: Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl. Acad. Sci. USA, 112, 11 49011 495, https://doi.org/10.1073/pnas.1510937112.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1988: Arctic cloudiness in spring from satellite imagery: Some comments. J. Climatol., 8, 533538, https://doi.org/10.1002/joc.3370080510.

    • Search Google Scholar
    • Export Citation
  • Itkin, P., and Coauthors, 2017: Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. J. Geophys. Res. Oceans, 122, 46614674, https://doi.org/10.1002/2016JC012403.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and G. Cesana, 2016: Recent advances in Arctic cloud and climate research. Current Climate Change Rep., 2, 159169, https://doi.org/10.1007/s40641-016-0051-9.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2001: Deformation of the Arctic Ocean Sea ice cover between November 1996 and April 1997: A Qualitative Survey. IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, J. P. Dempsey and H. H. Shen, Eds., Solid Mechanics and Its Applications, Vol. 94, Springer, 315–322.

  • Kwok, R., 2002: Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion. Geophys. Res. Lett., 29, 1311, https://doi.org/10.1029/2002GL014787.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and Coauthors, 2019: ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from operation IceBridge. Geophys. Res. Lett., 46, 11 22811 236, https://doi.org/10.1029/2019GL084976.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., A. A. Petty, M. Bagnardi, N. T. Kurtz, G. F. Cunningham, A. Ivanoff, and S. Kacimi, 2021: Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products. Cryosphere, 15, 821833, https://doi.org/10.5194/tc-15-821-2021.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. K. Krueger, C. Strong, and G. G. Mace, 2020a: Relationship between wintertime leads and low clouds in the pan-Arctic. J. Geophys. Res. Atmos., 125, e2020JD032595, https://doi.org/10.1029/2020JD032595.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. K. Krueger, C. Strong, G. G. Mace, and S. Benson, 2020b: Midwinter Arctic leads form and dissipate low clouds. Nat. Commun., 11, 206, https://doi.org/10.1038/s41467-019-14074-5.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., 2022: Impacts of active satellite sensors’ low-level cloud detection limitations on cloud radiative forcing in the Arctic. Atmos. Chem. Phys., 22, 81518173, https://doi.org/10.5194/acp-22-8151-2022.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2016: Assessment of Arctic Cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Climate, 29, 60656083, https://doi.org/10.1175/JCLI-D-15-0861.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. A. Ackerman, G. G. Mace, and Q. Zhang, 2012: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ., 124, 159173, https://doi.org/10.1016/j.rse.2012.05.006.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., M. D. Shupe, Z. Wang, and G. Mace, 2017: Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories. Atmos. Chem. Phys., 17, 59735989, https://doi.org/10.5194/acp-17-5973-2017.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and A. Schweiger, 2017: Synoptic conditions, clouds, and sea ice melt onset in the Beaufort and Chukchi seasonal ice zone. J. Climate, 30, 69997016, https://doi.org/10.1175/JCLI-D-16-0887.1.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., T. Vihma, G. Birnbaum, and U. Wacker, 2008: Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophys. Res. Lett., 35, L03805, https://doi.org/10.1029/2007GL032461.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Search Google Scholar
    • Export Citation
  • Marcq, S., and J. Weiss, 2012: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere. Cryosphere, 6, 143156, https://doi.org/10.5194/tc-6-143-2012.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and Coauthors, 2017: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ., 190, 260273, https://doi.org/10.1016/j.rse.2016.12.029.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1978: Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83, 36463658, https://doi.org/10.1029/JC083iC07p03646.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 18801900, https://doi.org/10.1175/MWR3154.1.

    • Search Google Scholar
    • Export Citation
  • Neumann, T. A., and Coauthors, 2019: The ice, cloud, and land elevation satellite – 2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sens. Environ., 233, 111325, https://doi.org/10.1016/j.rse.2019.111325.

    • Search Google Scholar
    • Export Citation
  • Palm, S. P., Y. Yuekui, and U. Herzfeld, 2019: ICESat-2 algorithm theoretical basis document for the atmosphere, Part I: Level 2 and 3 data products. NASA ICESat-2 Project, 104 pp., https://doi.org/10.5067/X6N528CVA8S9.

  • Petty, A. A., M. Bagnardi, N. T. Kurtz, R. Tilling, S. Fons, T. Armitage, C. Horvat, and R. Kwok, 2021: Assessment of ICESat-2 sea ice surface classification with Sentinel-2 Imagery: Implications for freeboard and new estimates of lead and floe geometry. Earth Space Sci., 8, e2020EA001491, https://doi.org/10.1029/2020EA001491.

    • Search Google Scholar
    • Export Citation
  • Rampal, P., J. Weiss, and D. Marsan, 2009: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res., 114, C05013, https://doi.org/10.1029/2008JC005066.

    • Search Google Scholar
    • Export Citation
  • Röhrs, J., and L. Kaleschke, 2012: An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery. Cryosphere, 6, 343352, https://doi.org/10.5194/tc-6-343-2012.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., R. G. Barry, M. W. Miles, E. L. Andreas, L. F. Radke, C. A. Brock, M. P. McCormick, and J. L. Moore, 1989: Lidar detection of leads in Arctic sea ice. Nature, 339, 530532, https://doi.org/10.1038/339530a0.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., and J. R. Key, 1994: Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983–1990. J. Appl. Meteor., 33, 948963, https://doi.org/10.1175/1520-0450(1994)033<0948:AORFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., R. W. Lindsay, J. R. Key, and J. A. Francis, 1999: Arctic clouds in multiyear satellite data sets. Geophys. Res. Lett., 26, 18451848, https://doi.org/10.1029/1999GL900479.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35, L10503, https://doi.org/10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. D. Kahl, and R. C. Schnell, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with soviet drifting station data. J. Climate, 5, 615629, https://doi.org/10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of Arctic synoptic activity, 1952–1989. Meteor. Atmos. Phys., 51, 147164, https://doi.org/10.1007/BF01030491.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, https://doi.org/10.1175/2010JAMC2467.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, https://doi.org/10.1175/2008JCLI2366.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, https://doi.org/10.1175/JAS-D-13-0179.1.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2007.00314.x.

    • Search Google Scholar
    • Export Citation
  • Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970.

    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2010: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574, https://doi.org/10.1175/JCLI3438.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Holt, W. Erick Rogers, J. Thomson, and H. H. Shen, 2016: Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014. J. Geophys. Res. Oceans, 121, 15021525, https://doi.org/10.1002/2015JC011349.

    • Search Google Scholar
    • Export Citation
  • Warren, S., C. H. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. UCAR/NCAR NCAR/TN-317+STR, 9438 pp., https://doi.org/10.5065/D6QC01D1.

  • Wenta, M., and A. Herman, 2018: The influence of the spatial distribution of leads and ice floes on the atmospheric boundary layer over fragmented sea ice. Ann. Glaciol., 59, 213230, https://doi.org/10.1017/aog.2018.15.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Zulauf, M. A., and S. K. Krueger, 2003: Two-dimensional cloud-resolving modeling of the atmospheric effects of Arctic leads based upon midwinter conditions at the surface heat budget of the Arctic Ocean ice camp. J. Geophys. Res., 108, 4312, https://doi.org/10.1029/2002JD002643.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 447 63
Full Text Views 142 142 7
PDF Downloads 179 179 8