Distinguishing Impacts on Winter Temperatures in Northern Mid–High-Latitude Continents during Multiyear and Single-Year La Niña Events: A Modeling Study

Tingting Zhu aDepartment of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Tingting Zhu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4575-5784
and
Jin-Yi Yu aDepartment of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Jin-Yi Yu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6156-7623
Restricted access

Abstract

Utilizing a 2200-yr CESM1 preindustrial simulation, this study examines the influence of property distinctions between single-year (SY) and multiyear (MY) La Niñas on their respective impacts on winter surface air temperatures across mid–high-latitude continents in the model, focusing on specific teleconnection mechanisms. Distinct impacts were identified in four continent sectors: North America, Europe, Western Siberia (W-Siberia), and Eastern Siberia (E-Siberia). The typical impacts of simulated SY La Niña events are featured with anomalous warming over Europe and W&E-Siberia and anomalous cooling over North America. Simulated MY La Niña events reduce the typical anomalous cooling over North America and the typical anomalous warming over W&E-Siberia but intensify the typical anomalous warming over Europe. The distinct impacts of simulated MY La Niñas are more prominent during their first winter than during the second winter, except over W-Siberia, where the distinct impact is more pronounced during the second winter. These overall distinct impacts in the CESM1 simulation can be attributed to the varying sensitivities of these continent sectors to the differences between MY and SY La Niñas in their intensity, location, and induced sea surface temperature anomalies in the Atlantic Ocean. These property differences were linked to the distinct climate impacts through the Pacific North America, North Atlantic Oscillation, Indian Ocean–induced wave train, and tropical North Atlantic–induced wave train mechanisms. The modeling results are then validated against observations from 1900 to 2022 to identify disparities in the CESM1 simulation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin-Yi Yu, jyyu@uci.edu

Abstract

Utilizing a 2200-yr CESM1 preindustrial simulation, this study examines the influence of property distinctions between single-year (SY) and multiyear (MY) La Niñas on their respective impacts on winter surface air temperatures across mid–high-latitude continents in the model, focusing on specific teleconnection mechanisms. Distinct impacts were identified in four continent sectors: North America, Europe, Western Siberia (W-Siberia), and Eastern Siberia (E-Siberia). The typical impacts of simulated SY La Niña events are featured with anomalous warming over Europe and W&E-Siberia and anomalous cooling over North America. Simulated MY La Niña events reduce the typical anomalous cooling over North America and the typical anomalous warming over W&E-Siberia but intensify the typical anomalous warming over Europe. The distinct impacts of simulated MY La Niñas are more prominent during their first winter than during the second winter, except over W-Siberia, where the distinct impact is more pronounced during the second winter. These overall distinct impacts in the CESM1 simulation can be attributed to the varying sensitivities of these continent sectors to the differences between MY and SY La Niñas in their intensity, location, and induced sea surface temperature anomalies in the Atlantic Ocean. These property differences were linked to the distinct climate impacts through the Pacific North America, North Atlantic Oscillation, Indian Ocean–induced wave train, and tropical North Atlantic–induced wave train mechanisms. The modeling results are then validated against observations from 1900 to 2022 to identify disparities in the CESM1 simulation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin-Yi Yu, jyyu@uci.edu
Save
  • Anderson, W., B. I. Cook, K. Slinski, K. Schwarzwald, A. McNally, and C. Funk, 2023: Multiyear La Niña events and multiseason drought in the horn of Africa. J. Hydrometeor., 24, 119131, https://doi.org/10.1175/JHM-D-22-0043.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20, 31643189, https://doi.org/10.1175/JCLI4156.1.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, https://doi.org/10.1007/s00382-006-0175-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chen, J., X. Wang, W. Zhou, C. Wang, Q. Xie, G. Li, and S. Chen, 2018: Unusual rainfall in Southern China in decaying August during extreme El Niño 2015/16: Role of the western Indian Ocean and north tropical Atlantic SST. J. Climate, 31, 70197034, https://doi.org/10.1175/JCLI-D-17-0827.1.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Fang, S.-W., and J.-Y. Yu, 2020a: Contrasting transition complexity between El Niño and La Niña: Observations and CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL088926, https://doi.org/10.1029/2020GL088926.

    • Search Google Scholar
    • Export Citation
  • Fang, S.-W., and J.-Y. Yu, 2020b: A control of ENSO transition complexity by tropical Pacific mean SSTs through tropical‐subtropical interaction. Geophys. Res. Lett., 47, e2020GL087933, https://doi.org/10.1029/2020GL087933.

    • Search Google Scholar
    • Export Citation
  • Hall, R., R. Erdélyi, E. Hanna, J. M. Jones, and A. A. Scaife, 2015: Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol., 35, 16971720, https://doi.org/10.1002/joc.4121.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. J. Dunstone, A. A. Scaife, D. M. Smith, S. Ineson, J. Lim, and D. Fereday, 2019: The impact of strong El Niño and La Niña events on the North Atlantic. Geophys. Res. Lett., 46, 28742883, https://doi.org/10.1029/2018GL081776.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 1997: Why do North American climate anomalies differ from one El Niño event to another? Geophys. Res. Lett., 24, 10591062, https://doi.org/10.1029/97GL00918.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The community Earth system model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Iwakiri, T., and M. Watanabe, 2020: Multiyear La Niña impact on summer temperature over Japan. J. Meteor. Soc. Japan, 98, 12451260, https://doi.org/10.2151/jmsj.2020-064.

    • Search Google Scholar
    • Export Citation
  • Iwakiri, T., and M. Watanabe, 2021: Mechanisms linking multi-year La Niña with preceding strong El Niño. Sci. Rep., 11, 17465, https://doi.org/10.1038/s41598-021-96056-6.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, and W. B. Anderson, 2020: ENSO teleconnections and impacts on U.S. summertime temperature during a multiyear La Niña life cycle. J. Climate, 33, 60096024, https://doi.org/10.1175/JCLI-D-19-0701.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2020: Understanding reintensified multiyear El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2021: Evolution of subtropical Pacific-onset El Niño: How its onset location controls its decay evolution. Geophys. Res. Lett., 48, e2020GL091345, https://doi.org/10.1029/2020GL091345.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Climate Atmos. Sci., 5, 88, https://doi.org/10.1038/s41612-022-00305-y.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., J.-Y. Yu, and B. Tian, 2023: Overemphasized role of preceding strong El Niño in generating multi-year La Niña events. Nat. Commun., 14, 6790, https://doi.org/10.1038/s41467-023-42373-5.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and K. Pegion, 2020: Do asymmetries in ENSO predictability arise from different recharged states? Climate Dyn., 54, 15071522, https://doi.org/10.1007/s00382-019-05069-5.

    • Search Google Scholar
    • Export Citation
  • Li, J., and C. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett., 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., 2015: The East Atlantic/West Russia (EA/WR) teleconnection in the North Atlantic: Climate impact and relation to Rossby wave propagation. Climate Dyn., 44, 32113222, https://doi.org/10.1007/s00382-014-2381-4.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-F., and J.-Y. Yu, 2023: The role of Indian Ocean in controlling the formation of multi-year El Niños through subtropical ENSO dynamics. J. Climate, 37, 385401, https://doi.org/10.1175/JCLI-D-23-0297.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Min, J., Q. Zhou, N. Liu, Q. Gao, and Z. Guan, 2008: Teleconnection mode between IOD and Northern Hemisphere tropospheric circulation and its mechanism. Meteor. Atmos. Phys., 100, 207215, https://doi.org/10.1007/s00703-008-0304-9.

    • Search Google Scholar
    • Export Citation
  • Nishihira, G., and S. Sugimoto, 2022: Severe cold winters in East Asia linked to first winter of La Niña events and in North America linked to second winter. Geophys. Res. Lett., 49, e2021GL095334, https://doi.org/10.1029/2021GL095334.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., P. DiNezio, and C. Deser, 2017: Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett., 44, 11 61411 623, https://doi.org/10.1002/2017GL075034.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., M. Reyers, and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337354, https://doi.org/10.1007/s00382-010-0770-x.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, https://doi.org/10.1029/2011JD016677.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, M. Collins, M. M. Junge, and R. Quadrelli, and Participating CMIP2 Modelling Groups, 2006: North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: A CMIP2 multi-model assessment. Climate Dyn., 27, 401420, https://doi.org/10.1007/s00382-006-0140-x.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Li, J.-Y. Yu, X. Hu, W. Dong, and S. He, 2018: El Niño–Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev., 5, 840857, https://doi.org/10.1093/nsr/nwy046.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 66116618, https://doi.org/10.1029/2018GL077664.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, https://doi.org/10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Perlwitz, and M. P. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 10191025, https://doi.org/10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, X. Wang, S. Chen, J. Chen, and S. Li, 2022a: Indian Ocean dipole and ENSO’s mechanistic importance in modulating the ensuing-summer precipitation over eastern China. npj Climate Atmos. Sci., 5, 48, https://doi.org/10.1038/s41612-022-00271-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, X. Wang, X. Wang, R. Zhang, Y. Li, and J. Gan, 2022b: IOD, ENSO, and seasonal precipitation variation over eastern China. Atmos. Res., 270, 106042, https://doi.org/10.1016/j.atmosres.2022.106042.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and D.-Z. Sun, 2022: ENSO asymmetry in CMIP6 models. J. Climate, 35, 55555572, https://doi.org/10.1175/JCLI-D-21-0835.1.

  • Zhu, T., and J.-Y. Yu, 2022: A shifting tripolar pattern of Antarctic sea ice concentration anomalies during multi‐year La Niña events. Geophys. Res. Lett., 49, e2022GL101217, https://doi.org/10.1029/2022GL101217.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1350 1350 402
Full Text Views 225 225 13
PDF Downloads 290 290 5