Responses of Lower-Stratospheric Water Vapor to Regional Sea Surface Temperature Changes

Lingyu Zhou aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Lingyu Zhou in
Current site
Google Scholar
PubMed
Close
,
Yan Xia aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China
bKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yan Xia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8664-5325
,
Fei Xie aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Fei Xie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2891-3883
,
Chen Zhou cSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Chen Zhou in
Current site
Google Scholar
PubMed
Close
, and
Chuanfeng Zhao dLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Chuanfeng Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of stratospheric water vapor (SWV) plays a crucial role in stratospheric chemistry and Earth’s energy budget, strongly influenced by sea surface temperature (SST). In this study, we systematically investigate the response of lower-SWV (LSWV) to regional sea surface temperature changes using idealized SST patch experiments within a climate model. The results indicate that LSWV is most sensitive to tropical sea surface temperature, with the strongest response occurring in late autumn and early winter. Warming of the tropical Indian Ocean and western Pacific (WP) leads to stratospheric drying, while warming of the tropical Atlantic (TA) and eastern Pacific results in stratospheric moistening. The drying impact on LSWV due to warming in the western Pacific Ocean exceeds the wet effect in the eastern Pacific Ocean by approximately 60%. The variations in tropical SST influence LSWV by modulating the temperature at the tropical tropopause layer, especially over the Indo-Pacific warm pool through Matsuno–Gill responses. Furthermore, the response of LSWV to tropical SST changes exhibits nonnegligible nonlinearity, which indicates the importance of nonlinearity in determining the LSWV response to global surface warming.

Significance Statement

In this study, we explore how changes in the temperature of the ocean’s surface can affect the amount of water vapor in the stratosphere, a layer of Earth’s atmosphere. Understanding this relationship is important because water vapor in the stratosphere can influence both our climate and the chemistry of the atmosphere. Using a climate model, we found that water vapor in the lower stratosphere is especially responsive to temperature changes in tropical ocean regions. Specifically, when the Indian Ocean and the western Pacific get warmer, the stratosphere tends to get drier. On the other hand, warming in the Atlantic and eastern Pacific leads to more moisture in the stratosphere. The way these changes add up is complex and not simply a sum of individual parts, especially in tropical warm pool regions. Our findings have implications for how we understand and predict the impacts of climate change on stratospheric water vapor.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yan Xia, xiayan@bnu.edu.cn; Fei Xie, xiefei@bnu.edu.cn

Abstract

The variability of stratospheric water vapor (SWV) plays a crucial role in stratospheric chemistry and Earth’s energy budget, strongly influenced by sea surface temperature (SST). In this study, we systematically investigate the response of lower-SWV (LSWV) to regional sea surface temperature changes using idealized SST patch experiments within a climate model. The results indicate that LSWV is most sensitive to tropical sea surface temperature, with the strongest response occurring in late autumn and early winter. Warming of the tropical Indian Ocean and western Pacific (WP) leads to stratospheric drying, while warming of the tropical Atlantic (TA) and eastern Pacific results in stratospheric moistening. The drying impact on LSWV due to warming in the western Pacific Ocean exceeds the wet effect in the eastern Pacific Ocean by approximately 60%. The variations in tropical SST influence LSWV by modulating the temperature at the tropical tropopause layer, especially over the Indo-Pacific warm pool through Matsuno–Gill responses. Furthermore, the response of LSWV to tropical SST changes exhibits nonnegligible nonlinearity, which indicates the importance of nonlinearity in determining the LSWV response to global surface warming.

Significance Statement

In this study, we explore how changes in the temperature of the ocean’s surface can affect the amount of water vapor in the stratosphere, a layer of Earth’s atmosphere. Understanding this relationship is important because water vapor in the stratosphere can influence both our climate and the chemistry of the atmosphere. Using a climate model, we found that water vapor in the lower stratosphere is especially responsive to temperature changes in tropical ocean regions. Specifically, when the Indian Ocean and the western Pacific get warmer, the stratosphere tends to get drier. On the other hand, warming in the Atlantic and eastern Pacific leads to more moisture in the stratosphere. The way these changes add up is complex and not simply a sum of individual parts, especially in tropical warm pool regions. Our findings have implications for how we understand and predict the impacts of climate change on stratospheric water vapor.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yan Xia, xiayan@bnu.edu.cn; Fei Xie, xiefei@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.9911 MB)
Save
  • Avery, M. A., S. M. Davis, K. H. Rosenlof, H. Ye, and A. E. Dessler, 2017: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño. Nat. Geosci., 10, 405409, https://doi.org/10.1038/ngeo2961.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonazzola, M., and P. H. Haynes, 2004: A trajectory-based study of the tropical tropopause region. J. Geophys. Res., 109, D20112, https://doi.org/10.1029/2003JD004356.

    • Search Google Scholar
    • Export Citation
  • Cao, G., and G. J. Zhang, 2017: Role of vertical structure of convective heating in MJO simulation in NCAR CAM5.3. J. Climate, 30, 74237439, https://doi.org/10.1175/JCLI-D-16-0913.1.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, https://doi.org/10.1073/pnas.1310344110.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos., 119, 12 58812 598, https://doi.org/10.1002/2014JD021712.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, https://doi.org/10.1175/JAS3985.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Q. Fu, 2018: A warming tropical central Pacific dries the lower stratosphere. Climate Dyn., 50, 28132827, https://doi.org/10.1007/s00382-017-3774-y.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, 2010: SPARC report on the evaluation of chemistry-climate models. WMO WCRP 132, 434 pp.

  • Fernández, N. C., R. G. Herrera, D. G. Puyol, E. H. MartÍn, R. R. GarcÍa, L. G. Presa, and P. R. RodrÍguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2013: Linear interference and the Northern Annular Mode response to tropical SST forcing: Sensitivity to model configuration. J. Geophys. Res. Atmos., 118, 42674279, https://doi.org/10.1002/jgrd.50385.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, https://doi.org/10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, https://doi.org/10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, L. D. Oman, and D. W. Waugh, 2013a: Contrasting effects of central Pacific and eastern Pacific El Niño on stratospheric water vapor. Geophys. Res. Lett., 40, 41154120, https://doi.org/10.1002/grl.50677.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, L. D. Oman, L. Wang, and M. M. Hurwitz, 2013b: Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J. Geophys. Res. Atmos., 118, 96589672, https://doi.org/10.1002/jgrd.50772.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., A. Gordon, L. D. Oman, F. Li, S. Davis, and S. Pawson, 2018: Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO. Atmos. Chem. Phys., 18, 45974615, https://doi.org/10.5194/acp-18-4597-2018.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. F. Forster, M. Fujiwara, Q. Fu, H. Vömel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, https://doi.org/10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2009: The tropical tropopause layer 1960–2100. Atmos. Chem. Phys., 9, 16211637, https://doi.org/10.5194/acp-9-1621-2009.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, https://doi.org/10.1175/JAS-D-11-0123.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, https://doi.org/10.1175/JAS-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, https://doi.org/10.1002/qj.49712454911.

    • Search Google Scholar
    • Export Citation
  • Hu, D., W. Tian, F. Xie, J. Shu, and S. Dhomse, 2014: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888900, https://doi.org/10.1007/s00376-013-3152-6.

    • Search Google Scholar
    • Export Citation
  • Hu, D., W. Tian, Z. Guan, Y. Guo, and S. Dhomse, 2016: Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened Walker circulation. J. Climate, 29, 77557771, https://doi.org/10.1175/JCLI-D-15-0851.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., M. J. Webb, A. C. Maycock, and M. Collins, 2010: Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. Atmos. Chem. Phys., 10, 71617167, https://doi.org/10.5194/acp-10-7161-2010.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402, 399401, https://doi.org/10.1038/46521.

    • Search Google Scholar
    • Export Citation
  • Konopka, P., F. Ploeger, M. Tao, and M. Riese, 2016: Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values. J. Geophys. Res. Atmos., 121, 11 48611 501, https://doi.org/10.1002/2015JD024698.

    • Search Google Scholar
    • Export Citation
  • Li, S., W. A. Robinson, M. P. Hoerling, and K. M. Weickmann, 2007: Dynamics of the extratropical response to a tropical Atlantic SST anomaly. J. Climate, 20, 560574, https://doi.org/10.1175/JCLI4014.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., D. Paynter, Y. Ming, and V. Ramaswamy, 2017: Changes of the tropical tropopause layer under global warming. J. Climate, 30, 12451258, https://doi.org/10.1175/JCLI-D-16-0457.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Oberländer, S., U. Langematz, and S. Meul, 2013: Unraveling impact factors for future changes in the Brewer-Dobson circulation. J. Geophys. Res. Atmos., 118, 10 29610 312, https://doi.org/10.1002/jgrd.50775.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Rao, J., and R. Ren, 2018: Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dyn., 51, 20792096, https://doi.org/10.1007/s00382-017-3998-x.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113, D06107, https://doi.org/10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, D. R. Jackson, and R. Swinbank, 2003: Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett., 30, 1880, https://doi.org/10.1029/2003GL017591.

    • Search Google Scholar
    • Export Citation
  • Schieferdecker, T., S. Lossow, G. P. Stiller, and T. von Clarmann, 2015: Is there a solar signal in lower stratospheric water vapour? Atmos. Chem. Phys., 15, 98519863, https://doi.org/10.5194/acp-15-9851-2015.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., J. D. Haigh, and R. Toumi, 2001: Radiative forcing due to trends in stratospheric water vapour. Geophys. Res. Lett., 28, 179182, https://doi.org/10.1029/2000GL011846.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, https://doi.org/10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stenke, A., and V. Grewe, 2005: Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry. Atmos. Chem. Phys., 5, 12571272, https://doi.org/10.5194/acp-5-1257-2005.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112, https://doi.org/10.1175/2010JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and D. B. Enfield, 2008: Climate response to anomalously large and small Atlantic warm pools during the summer. J. Climate, 21, 24372450, https://doi.org/10.1175/2007JCLI2029.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., Y. Peng, Y. Liu, Y. Liu, X. Xie, and Z. Guo, 2020: Understanding cloud droplet spectral dispersion effect using empirical and semi-analytical parameterizations in NCAR CAM5.3. Earth Space Sci., 7, e2020EA001276, https://doi.org/10.1029/2020EA001276.

    • Search Google Scholar
    • Export Citation
  • Wang, W., K. Matthes, and T. Schmidt, 2015: Quantifying contributions to the recent temperature variability in the tropical tropopause layer. Atmos. Chem. Phys., 15, 58155826, https://doi.org/10.5194/acp-15-5815-2015.

    • Search Google Scholar
    • Export Citation
  • Wang, W., K. Matthes, N.-E. Omrani, and M. Latif, 2016: Decadal variability of tropical tropopause temperature and its relationship to the Pacific decadal oscillation. Sci. Rep., 6, 29537, https://doi.org/10.1038/srep29537.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Su, J. H. Jiang, N. J. Livesey, M. L. Santee, L. Froidevaux, W. G. Read, and J. Anderson, 2017: The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model. Climate Dyn., 48, 26712683, https://doi.org/10.1007/s00382-016-3231-3.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Huang, and Y. Hu, 2020: Robust acceleration of stratospheric moistening and its radiative feedback under greenhouse warming. J. Geophys. Res. Atmos., 125, e2020JD033090, https://doi.org/10.1029/2020JD033090.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Huang, Y. Hu, and J. Yang, 2021a: Lower stratospheric water vapor variations diagnosed from satellite observations, reanalysis data, and a chemistry—Climate model. J. Meteor. Res., 35, 701715, https://doi.org/10.1007/s13351-021-0193-0.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Wang, Y. Huang, Y. Hu, J. Bian, C. Zhao, and C. Sun, 2021b: Significant contribution of stratospheric water vapor to the poleward expansion of the Hadley circulation in autumn under greenhouse warming. Geophys. Res. Lett., 48, e2021GL094008, https://doi.org/10.1029/2021GL094008.

    • Search Google Scholar
    • Export Citation
  • Xie, F., W. Tian, J. Austin, J. Li, H. Tian, J. Shu, and C. Chen, 2011: The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss., 11, 41414166, https://doi.org/10.5194/acpd-11-4141-2011.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, https://doi.org/10.5194/acp-12-5259-2012.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, Y. Li, and J. Feng, 2014: Indo-Pacific warm pool area expansion, Modoki activity and tropical cold-point tropopause temperature variations. Sci. Rep., 4, 4552, https://doi.org/10.1038/srep04552.

    • Search Google Scholar
    • Export Citation
  • Xie, F., and Coauthors, 2018: Effect of the Indo-Pacific warm pool on lower-stratospheric water vapor and comparison with the effect of ENSO. J. Climate, 31, 929943, https://doi.org/10.1175/JCLI-D-17-0575.1.

    • Search Google Scholar
    • Export Citation
  • Xie, F., W. Tian, X. Zhou, J. Zhang, Y. Xia, and J. Lu, 2020a: Increase in lower stratospheric water vapor in the past 100 years related to tropical Atlantic warming. Geophys. Res. Lett., 47, e2020GL090539, https://doi.org/10.1029/2020GL090539.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Zhang, Z. Huang, J. Lu, R. Ding, and C. Sun, 2020b: An estimate of the relative contributions of sea surface temperature variations in various regions to stratospheric change. J. Climate, 33, 49935011, https://doi.org/10.1175/JCLI-D-19-0743.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., W. Zhou, W. Tian, Y. Zhang, Y. Jian, and Y. Li, 2023: Tropical stratospheric forcings weaken the response of the East Asian winter temperature to ENSO. Ocean-Land-Atmos. Res., 2, 0001, https://doi.org/10.34133/olar.0001.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst., 9, 21742189, https://doi.org/10.1002/2017MS001096.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., J. Lu, Y. Hu, and M. D. Zelinka, 2020: Responses of the Hadley circulation to regional sea surface temperature changes. J. Climate, 33, 429441, https://doi.org/10.1175/JCLI-D-19-0315.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. Wang, M. D. Zelinka, Y. Liu, Y. Dong, and K. C. Armour, 2023: Explaining forcing efficacy with pattern effect and state dependence. Geophys. Res. Lett., 50, e2022GL101700, https://doi.org/10.1029/2022GL101700.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., J. Li, F. Xie, R. Ding, Y. Li, S. Zhao, J. Zhang, and Y. Li, 2018: The effects of the Indo-Pacific warm pool on the stratosphere. Climate Dyn., 51, 40434064, https://doi.org/10.1007/s00382-017-3584-2.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Q. Chen, Y. Li, Y. Zhao, Y. Lin, and Y. Jiang, 2021: Impacts of the Indo-Pacific warm pool on lower stratospheric water vapor: Seasonality and hemispheric contrasts. J. Geophys. Res. Atmos., 126, e2020JD034363, https://doi.org/10.1029/2020JD034363.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 619 619 71
Full Text Views 211 211 28
PDF Downloads 243 243 14