Enhanced Mid-to-Late Summer Precipitation over Midlatitude East Asia under Global Warming

Chuan-Yang Wang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Chuan-Yang Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8480-0261
,
Xiao-Tong Zheng aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Xiao-Tong Zheng in
Current site
Google Scholar
PubMed
Close
, and
Fengfei Song aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Fengfei Song in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

East Asian summer monsoon precipitation is projected to increase under greenhouse warming with strong intraseasonal variation. Using a 35-member CESM Large Ensemble and 30 CMIP6 models, this study reveals that in July and August, maximum rainfall changes in East Asia take place in the midlatitudes, influencing regions encompassing North and Northeast China, the Korean Peninsula, and Japan. The intensified precipitation is attributed to the combined effect of the thermodynamic and dynamic components. The former stems from the enriched low-level moisture, which peaks in continental East Asia in July and August, under global warming. The dynamic effect is due to the enhanced upward motion, associated with the enhanced southerlies throughout the troposphere over midlatitude East Asia. The southerlies also act to intensify the low-level monsoonal circulation, strengthening moisture transport from the tropical ocean to the midlatitudes. In addition to the mean-state changes, the precipitation interannual variability in this region also intensifies, partly due to the enhanced low-level moisture and partly associated with enhanced large-scale circulation anomalies, such as the northwestern Pacific anticyclone. The enhanced background precipitation, along with the intensified interannual variability, may lead to more rainy summers in a warmer climate, with instances where historically extreme precipitation events become more frequent, posing challenges for water resource management and agriculture in the region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Tong Zheng, zhengxt@ouc.edu.cn

Abstract

East Asian summer monsoon precipitation is projected to increase under greenhouse warming with strong intraseasonal variation. Using a 35-member CESM Large Ensemble and 30 CMIP6 models, this study reveals that in July and August, maximum rainfall changes in East Asia take place in the midlatitudes, influencing regions encompassing North and Northeast China, the Korean Peninsula, and Japan. The intensified precipitation is attributed to the combined effect of the thermodynamic and dynamic components. The former stems from the enriched low-level moisture, which peaks in continental East Asia in July and August, under global warming. The dynamic effect is due to the enhanced upward motion, associated with the enhanced southerlies throughout the troposphere over midlatitude East Asia. The southerlies also act to intensify the low-level monsoonal circulation, strengthening moisture transport from the tropical ocean to the midlatitudes. In addition to the mean-state changes, the precipitation interannual variability in this region also intensifies, partly due to the enhanced low-level moisture and partly associated with enhanced large-scale circulation anomalies, such as the northwestern Pacific anticyclone. The enhanced background precipitation, along with the intensified interannual variability, may lead to more rainy summers in a warmer climate, with instances where historically extreme precipitation events become more frequent, posing challenges for water resource management and agriculture in the region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Tong Zheng, zhengxt@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.6171 MB)
Save
  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195, https://doi.org/10.1007/s10584-006-9226-z.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239, https://doi.org/10.1007/BF00198617.

    • Search Google Scholar
    • Export Citation
  • Chen, H., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull., 58, 14621472, https://doi.org/10.1007/s11434-012-5612-2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2016: Early summer response of the East Asian summer monsoon to atmospheric CO2 forcing and subsequent sea surface warming. J. Climate, 29, 54315446, https://doi.org/10.1175/JCLI-D-15-0649.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., J. Fischer, W. Kong, and M. J. Herman, 2019: Intensification of the pre-Meiyu rainband in the late 21st century. Geophys. Res. Lett., 46, 75367545, https://doi.org/10.1029/2019GL083383.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., W. Kong, C. H. Wu, and D. S. Battisti, 2020: Origins of East Asian summer monsoon seasonality. J. Climate, 33, 79457965, https://doi.org/10.1175/JCLI-D-19-0888.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett., 42, 10 79810 806, https://doi.org/10.1002/2015GL066669.

    • Search Google Scholar
    • Export Citation
  • Dai, L., T. F. Cheng, and M. Lu, 2022: Anthropogenic warming disrupts intraseasonal monsoon stages and brings dry-get-wetter climate in future East Asia. npj Climate Atmos. Sci., 5, 11, https://doi.org/10.1038/s41612-022-00235-9.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, https://doi.org/10.1002/joc.1615.

    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, J. Lu, and F. Song, 2019: Mechanisms for an amplified precipitation seasonal cycle in the U.S. west coast under global warming. J. Climate, 32, 46814698, https://doi.org/10.1175/JCLI-D-19-0093.1.

    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, R. Mizuta, and T. Ose, 2021: Difference future changes between early and late summer monsoon precipitation in East Asia. J. Meteor. Soc. Japan, 99, 15011524, https://doi.org/10.2151/jmsj.2021-073.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, https://doi.org/10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett., 47, e2020GL087492, https://doi.org/10.1029/2020GL087492.

    • Search Google Scholar
    • Export Citation
  • He, C., 2023: Future drying subtropical East Asia in winter: Mechanism and observational constraint. J. Climate, 36, 29852998, https://doi.org/10.1175/JCLI-D-22-0347.1.

    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, https://doi.org/10.1175/JCLI-D-13-00494.1.

    • Search Google Scholar
    • Export Citation
  • He, C., and T. Li, 2019: Does global warming amplify interannual climate variability? Climate Dyn., 52, 26672684, https://doi.org/10.1007/s00382-018-4286-0.

    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, B. Wu, and T. Zhou, 2018: Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol., 131, 681691, https://doi.org/10.1007/s00704-016-2001-9.

    • Search Google Scholar
    • Export Citation
  • He, C., Z. Wang, T. Zhou, and T. Li, 2019: Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J. Climate, 32, 33733388, https://doi.org/10.1175/JCLI-D-18-0427.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., S. Matsumura, T. Ose, and Y. N. Takayabu, 2019: Jet–precipitation relation and future change of the mei-yu–baiu rainband and subtropical Jet in CMIP5 coupled GCM simulations. J. Climate, 32, 22472259, https://doi.org/10.1175/JCLI-D-18-0426.1.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., Y. Kawatani, and N. Sato, 2023: Inter-model variability of the CMIP5 future projection of Baiu, Meiyu, and Changma precipitation. Climate Dyn., 60, 18491864, https://doi.org/10.1007/s00382-022-06418-7.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. Pedder, and D. W. Jones, 2003: The omega equation and potential vorticity. Quart. J. Roy. Meteor. Soc., 129, 32773303, https://doi.org/10.1256/qj.02.135.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 12471260, https://doi.org/10.1002/jgrd.50145.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Search Google Scholar
    • Export Citation
  • Huang, D., A. Liu, Y. Zheng, and J. Zhu, 2022: Inter-model spread of the simulated East Asian summer monsoon rainfall and the associated atmospheric circulations from the CMIP6 models. J. Geophys. Res. Atmos., 127, e2022JD037371, https://doi.org/10.1029/2022JD037371.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, https://doi.org/10.1038/ngeo2571.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., and Z. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, https://doi.org/10.1007/s11434-012-5533-0.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, and K. Hu, 2018: Weakening of northwest Pacific anticyclone anomalies during post–El Nino summers under global warming. J. Climate, 31, 35393555, https://doi.org/10.1175/JCLI-D-17-0613.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post-El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014a: Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part I: Past changes and future projections. Climate Dyn., 43, 25532568, https://doi.org/10.1007/s00382-014-2073-0.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014b: Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming. Climate Dyn., 43, 25692583, https://doi.org/10.1007/s00382-014-2146-0.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2017: The Asian monsoon and its future change in climate models: A review. J. Meteor. Soc. Japan., 95, 733, https://doi.org/10.2151/jmsj.2017-002.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and T. Uchiyama, 2006: Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteor. Soc. Japan, 84, 247258, https://doi.org/10.2151/jmsj.84.247.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, https://doi.org/10.1002/jgrd.50258.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, https://doi.org/10.1175/JCLI-D-14-00559.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Sun, T. Li, Y. Ding, and T. Hu, 2019: Future changes in East Asian summer monsoon circulation and precipitation under 1.5° to 5°C of warming. Earth’s Future, 7, 13911406, https://doi.org/10.1029/2019EF001276.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Li, and Y. Ding, 2020: East Asian summer rainfall projection and uncertainty under a global warming scenario. Int. J. Climatol., 40, 48284842, https://doi.org/10.1002/joc.6491.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and Y. Fu, 2010: Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J. Climate, 23, 33163331, https://doi.org/10.1175/2009JCLI3130.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, https://doi.org/10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Climate Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w.

    • Search Google Scholar
    • Export Citation
  • Oh, H., K.-J. Ha, and J.-Y. Jeong, 2024: Identifying dynamic and thermodynamic contributions to the record-breaking 2022 summer extreme rainfall events in Korea. Asia-Pac. J. Atmos. Sci., https://doi.org/10.1007/s13143-023-00334-4, in press.

    • Search Google Scholar
    • Export Citation
  • Qiao, S., and Coauthors, 2021: The longest 2020 meiyu season over the past 60 years: Subseasonal perspective and its predictions. Geophys. Res. Lett., 48, e2021GL093596, https://doi.org/10.1029/2021GL093596.

    • Search Google Scholar
    • Export Citation
  • Qin, P., Z. Xie, J. Zou, S. Liu, and S. Chen, 2021: Future precipitation extremes in China under climate change and their physical quantification based on a regional climate model and CMIP5 model simulations. Adv. Atmos. Sci., 38, 460479, https://doi.org/10.1007/s00376-020-0141-4.

    • Search Google Scholar
    • Export Citation
  • Qu, X., G. Huang, and W. Zhou, 2014: Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theor. Appl. Climatol., 117, 123131, https://doi.org/10.1007/s00704-013-0995-9.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rostron, J. W., D. M. H. Sexton, K. Furtado, M. J. Carvalho, S. F. Milton, J. M. Rodríguez, and W. Zhang, 2023: Evaluation and projections of the East Asian summer monsoon in a perturbed parameter ensemble. Climate Dyn., 60, 39013926, https://doi.org/10.1007/s00382-022-06507-7.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Search Google Scholar
    • Export Citation
  • Shao, Z., H. Wang, Y.-F. Geng, D. Diao, Y. Xu, and X.-T. Zheng, 2024: East Asian summer monsoon response to anthropogenic aerosols redistribution: Contrasting 1950–1980 and 1980–2010 to understand the role of non-Asian forcing. Climate Dyn., 62, 21872205, https://doi.org/10.1007/s00382-023-07016-x.

    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018: Future changes in seasonality of the North Pacific and North Atlantic subtropical highs. Geophys. Res. Lett., 45, 11 95911 968, https://doi.org/10.1029/2018GL079940.

    • Search Google Scholar
    • Export Citation
  • Song, F., J. Lu, L. R. Leung, and F. Liu, 2020: Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett., 47, e2020GL090327, https://doi.org/10.1029/2020GL090327.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., A. Huang, P. Wu, D. Huang, D. Xue, and Y. Wu, 2021: Drivers of summer extreme precipitation events over East China. Geophys. Res. Lett., 48, e2021GL093670, https://doi.org/10.1029/2021GL093670.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2021: Monsoons climate change assessment. Bull. Amer. Meteor. Soc., 102, E1E19, https://doi.org/10.1175/BAMS-D-19-0335.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2018: Indo-western Pacific climate variability: ENSO forcing and internal dynamics in a tropical Pacific pacemaker simulation. J. Climate, 31, 10 12310 139, https://doi.org/10.1175/JCLI-D-18-0203.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., X.-T. Zheng, and S.-P. Xie, 2023: Enhanced ENSO-unrelated summer variability in the Indo–Western Pacific under global warming. J. Climate, 36, 17491765, https://doi.org/10.1175/JCLI-D-22-0450.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr, 2017: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Climate Change, 7, 268274, https://doi.org/10.1038/nclimate3239.

    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lang, and D. Jiang, 2023: Northwestward advance of the northern boundary of the East Asian summer monsoon over the 21st century in CMIP6 projections. Int. J. Climatol., 43, 38593876, https://doi.org/10.1002/joc.8062.

    • Search Google Scholar
    • Export Citation
  • Wu, G., T. Ma, Y. Liu, and Z. Jiang, 2020: PV‐Q perspective of cyclogenesis and vertical velocity development downstream of the Tibetan Plateau. J. Geophys. Res. Atmos., 125, e2019JD030912, https://doi.org/10.1029/2019JD030912.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Xue, D., J. Lu, L. R. Leung, H. Teng, F. Song, T. Zhou, and Y. Zhang, 2023: Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability. Nat. Commun., 14, 3856, https://doi.org/10.1038/s41467-023-39460-y.

    • Search Google Scholar
    • Export Citation
  • Yang, K., W. Cai, G. Huang, K. Hu, B. Ng, and G. Wang, 2022: Increased variability of the western Pacific subtropical high under greenhouse warming. Proc. Natl. Acad. Sci. USA, 119, e2120335119, https://doi.org/10.1073/pnas.2120335119.

    • Search Google Scholar
    • Export Citation
  • Yang, X., P. Huang, Y. Liu, and D. Chen, 2022: An interdecadal enhancement of the impact of ENSO on the summer Northeast Asian circulation around 1999/2000 through the Silk Road pattern. J. Climate, 35, 74817497, https://doi.org/10.1175/JCLI-D-22-0195.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., J. Yin, D. Wang, Y. Liu, Y. Lu, W. Zhang, and S. Xu, 2023: ABM-based emergency evacuation modelling during urban pluvial floods: A “7.20” pluvial flood event study in Zhengzhou, Henan Province. Sci. China Earth Sci., 66, 282291, https://doi.org/10.1007/s11430-022-1015-6.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2022: Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. npj Climate Atmos. Sci., 5, 80, https://doi.org/10.1038/s41612-022-00303-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zou, L. Zhang, and X. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nat. Commun., 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., 2019: Indo-Pacific climate modes in warming climate: Consensus and uncertainty across model projections. Curr. Climate Change Rep., 5, 308321, https://doi.org/10.1007/s40641-019-00152-9.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., G. Huang, and P. Huang, 2018: Changes in the East Asian summer monsoon rainfall under global warming: Moisture budget decompositions and sources of uncertainty. Climate Dyn., 51, 13631373, https://doi.org/10.1007/s00382-017-3959-4.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., G. Huang, and P. Huang, 2020a: A bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warming. Climate Dyn., 54 (1–2), 116, https://doi.org/10.1007/s00382-019-04980-1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., G. Huang, and P. Huang, 2020b: Inter-model spread of the changes in the East Asian summer monsoon system in CMIP5/6 models. J. Geophys. Res. Atmos., 125, 2020JD033016, https://doi.org/10.1029/2020JD033016.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., S.-P. Xie, and D. Yang, 2019: Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift. Nat. Climate Change, 9, 834839, https://doi.org/10.1038/s41558-019-0603-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 854 854 84
Full Text Views 141 141 21
PDF Downloads 188 188 26