Development of Polar Lows in Future Climate Scenarios over the Barents Sea

Ting Lin aDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Ting Lin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0000-1173-2731
,
Anna Rutgersson aDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Anna Rutgersson in
Current site
Google Scholar
PubMed
Close
, and
Lichuan Wu aDepartment of Earth Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Lichuan Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0611-3543
Restricted access

Abstract

Polar lows (PLs) are intense mesoscale cyclones that form over polar oceans during colder months. Characterized by high wind speeds and heavy precipitation, they profoundly impact coastal communities, shipping, and offshore activities. Amid the substantial environmental changes in polar regions due to global warming, PLs are expected to undergo noteworthy transformations. In this study, we investigate the response of PL development in the Barents Sea to climate warming based on two representative PLs. Sensitivity experiments were conducted including the PLs in the present climate and the PLs in a pseudo–global warming scenario projected by the late twenty-first century for Shared Socioeconomic Pathway (SSP) 2-4.5 and SSP 3-7.0 scenarios from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In both warming climate scenarios, there is an anticipated decrease in PL intensity, in terms of the maximum surface wind speed and minimum sea level pressure. Despite the foreseen increase in latent heat release in the future climate, contributing to the enhancement of PL intensity, other primary factors such as decreased baroclinic instability, heightened atmospheric static stability, and reduced overall surface heat fluxes play pivotal roles in the overall decrease in PL intensity in the Barents Sea under warming conditions. The augmentation of surface latent heat flux, however, results in increased precipitation associated with PLs by enhancing the latent heat release. Furthermore, the regional steering flow shifts in the warming climate can influence the trajectory of PLs during their development.

Significance Statement

Global warming is anticipated to impact cyclone systems worldwide. Polar lows (PLs), intense mesocyclones in polar regions with potential socioeconomic and human life implications, pose uncertainties regarding intensity changes in a warming climate. In this study, we aimed to better understand how PLs over the Barents Sea will respond to the environmental changes in future climate conditions [Shared Socioeconomic Pathway (SSP) 2-4.5 and SSP 3-7.0] by the end of the twenty-first century. Our results find that the intensity of PLs is expected to decrease in the future while there is an expected increase in precipitation associated with PLs in the warming climate. These findings aim to contribute valuable insights for disaster management strategies in the face of evolving climate scenarios.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lichuan Wu, lichuan.wu@geo.uu.se

Abstract

Polar lows (PLs) are intense mesoscale cyclones that form over polar oceans during colder months. Characterized by high wind speeds and heavy precipitation, they profoundly impact coastal communities, shipping, and offshore activities. Amid the substantial environmental changes in polar regions due to global warming, PLs are expected to undergo noteworthy transformations. In this study, we investigate the response of PL development in the Barents Sea to climate warming based on two representative PLs. Sensitivity experiments were conducted including the PLs in the present climate and the PLs in a pseudo–global warming scenario projected by the late twenty-first century for Shared Socioeconomic Pathway (SSP) 2-4.5 and SSP 3-7.0 scenarios from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In both warming climate scenarios, there is an anticipated decrease in PL intensity, in terms of the maximum surface wind speed and minimum sea level pressure. Despite the foreseen increase in latent heat release in the future climate, contributing to the enhancement of PL intensity, other primary factors such as decreased baroclinic instability, heightened atmospheric static stability, and reduced overall surface heat fluxes play pivotal roles in the overall decrease in PL intensity in the Barents Sea under warming conditions. The augmentation of surface latent heat flux, however, results in increased precipitation associated with PLs by enhancing the latent heat release. Furthermore, the regional steering flow shifts in the warming climate can influence the trajectory of PLs during their development.

Significance Statement

Global warming is anticipated to impact cyclone systems worldwide. Polar lows (PLs), intense mesocyclones in polar regions with potential socioeconomic and human life implications, pose uncertainties regarding intensity changes in a warming climate. In this study, we aimed to better understand how PLs over the Barents Sea will respond to the environmental changes in future climate conditions [Shared Socioeconomic Pathway (SSP) 2-4.5 and SSP 3-7.0] by the end of the twenty-first century. Our results find that the intensity of PLs is expected to decrease in the future while there is an expected increase in precipitation associated with PLs in the warming climate. These findings aim to contribute valuable insights for disaster management strategies in the face of evolving climate scenarios.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lichuan Wu, lichuan.wu@geo.uu.se

Supplementary Materials

    • Supplemental Materials (PDF 15.519 MB)
Save
  • Årthun, M., T. Eldevik, and L. H. Smedsrud, 2019: The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Climate, 32, 33273341, https://doi.org/10.1175/JCLI-D-18-0750.1.

    • Search Google Scholar
    • Export Citation
  • Asbjørnsen, H., M. Årthun, Ø. Skagseth, and T. Eldevik, 2020: Mechanisms underlying recent Arctic Atlantification. Geophys. Res. Lett., 47, e2020GL088036, https://doi.org/10.1029/2020GL088036.

    • Search Google Scholar
    • Export Citation
  • Blechschmidt, A.-M., 2008: A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing. Geophys. Res. Lett., 35, L09815, https://doi.org/10.1029/2008GL033706.

    • Search Google Scholar
    • Export Citation
  • Boyd, K., Z. Wang, and J. E. Walsh, 2022: A genesis potential index for polar lows. J. Climate, 35, 78917902, https://doi.org/10.1175/JCLI-D-22-0100.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2009: The dynamics of a polar low assessed using potential vorticity inversion. Quart. J. Roy. Meteor. Soc., 135, 880893, https://doi.org/10.1002/qj.411.

    • Search Google Scholar
    • Export Citation
  • Bresch, J. F., R. J. Reed, and M. D. Albright, 1997: A polar-low development over the Bering Sea: Analysis, numerical simulation, and sensitivity experiments. Mon. Wea. Rev., 125, 31093130, https://doi.org/10.1175/1520-0493(1997)125<3109:APLDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bresson, H., K. I. Hodges, L. C. Shaffrey, G. Zappa, and R. Schiemann, 2022: The response of Northern Hemisphere polar lows to climate change in a 25 km high-resolution global climate model. J. Geophys. Res. Atmos., 127, e2021JD035610, https://doi.org/10.1029/2021JD035610.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., G. Müller, and G. Noer, 2009: A polar low pair over the Norwegian Sea. Mon. Wea. Rev., 137, 25592575, https://doi.org/10.1175/2009MWR2864.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wang, C.-Y. Tam, N.-C. Lau, D.-S. D. Lau, and H.-Y. Mok, 2020: Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River delta region using pseudo-global-warming method. Sci. Rep., 10, 1965, https://doi.org/10.1038/s41598-020-58824-8.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Claud, C., G. Heinemann, E. Raustein, and L. Mcmurdie, 2004: Polar low le Cygne: Satellite observations and numerical simulations. Quart. J. Roy. Meteor. Soc., 130, 10751102, https://doi.org/10.1256/qj.03.72.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and D. K. Hall, 2014: Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev.: Climate Change, 5, 389409, https://doi.org/10.1002/wcc.277.

    • Search Google Scholar
    • Export Citation
  • Duncan, C. N., 1977: A numerical investigation of polar lows. Quart. J. Roy. Meteor. Soc., 103, 255267, https://doi.org/10.1002/qj.49710343604.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Føre, I., J. E. Kristjánsson, E. W. Kolstad, T. J. Bracegirdle, Ø. Saetra, and B. Røsting, 2012: A ‘hurricane-like’ polar low fuelled by sensible heat flux: High-resolution numerical simulations. Quart. J. Roy. Meteor. Soc., 138, 13081324, https://doi.org/10.1002/qj.1876.

    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Search Google Scholar
    • Export Citation
  • Fricko, O., and Coauthors, 2017: The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Global Environ. Change, 42, 251267, https://doi.org/10.1016/j.gloenvcha.2016.06.004.

    • Search Google Scholar
    • Export Citation
  • Fujimori, S., T. Hasegawa, T. Masui, K. Takahashi, D. S. Herran, H. Dai, Y. Hijioka, and M. Kainuma, 2017: SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environ. Change, 42, 268283, https://doi.org/10.1016/j.gloenvcha.2016.06.009.

    • Search Google Scholar
    • Export Citation
  • Gachon, P., R. Laprise, P. Zwack, and F. J. Saucier, 2003: The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay. Tellus, 55A, 6187, https://doi.org/10.3402/tellusa.v55i1.12079.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040%3C0328:TCMEIP%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2023: Climate Change 2023: Synthesis Report. H. Lee and J. Romero, Eds., IPCC, 115 pp., https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf.

  • Irving, D., I. Simmonds, and K. Keay, 2010: Mesoscale cyclone activity over the ice-free Southern Ocean: 1999–2008. J. Climate, 23, 54045420, https://doi.org/10.1175/2010JCLI3628.1.

    • Search Google Scholar
    • Export Citation
  • Kanada, S., T. Takemi, M. Kato, S. Yamasaki, H. Fudeyasu, K. Tsuboki, O. Arakawa, and I. Takayabu, 2017: A multimodel intercomparison of an intense typhoon in future, warmer climates by four 5-km-mesh models. J. Climate, 30, 60176036, https://doi.org/10.1175/JCLI-D-16-0715.1.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2015: Extreme small-scale wind episodes over the Barents Sea: When, where and why? Climate Dyn., 45, 21372150, https://doi.org/10.1007/s00382-014-2462-4.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2017: Higher ocean wind speeds during marine cold air outbreaks. Quart. J. Roy. Meteor. Soc., 143, 20842092, https://doi.org/10.1002/qj.3068.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, https://doi.org/10.1007/s00382-007-0331-0.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. J. Bracegirdle, and M. Zahn, 2016: Re-examining the roles of surface heat flux and latent heat release in a “hurricane-like” polar low over the Barents Sea. J. Geophys. Res. Atmos., 121, 78537867, https://doi.org/10.1002/2015JD024633.

    • Search Google Scholar
    • Export Citation
  • Kriegler, E., and Coauthors, 2017: Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environ. Change, 42, 297315, https://doi.org/10.1016/j.gloenvcha.2016.05.015.

    • Search Google Scholar
    • Export Citation
  • Landgren, O. A., Y. Batrak, J. E. Haugen, E. Støylen, and T. Iversen, 2019a: Polar low variability and future projections for the Nordic and Barents Seas. Quart. J. Roy. Meteor. Soc., 145, 31163128, https://doi.org/10.1002/qj.3608.

    • Search Google Scholar
    • Export Citation
  • Landgren, O. A., I. A. Seierstad, and T. Iversen, 2019b: Projected future changes in marine cold-air outbreaks associated with polar lows in the northern North-Atlantic Ocean. Climate Dyn., 53, 25732585, https://doi.org/10.1007/s00382-019-04642-2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Search Google Scholar
    • Export Citation
  • Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Climate Change, 8, 634639, https://doi.org/10.1038/s41558-018-0205-y.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeng, H., 1991: Features of the physical oceanographic conditions of the Barents Sea. Polar Res., 10, 518, https://doi.org/10.3402/polar.v10i1.6723.

    • Search Google Scholar
    • Export Citation
  • Mäll, M., R. Nakamura, Ü. Suursaar, and T. Shibayama, 2020: Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective. Nat. Hazards, 102, 6799, https://doi.org/10.1007/s11069-020-03911-2.

    • Search Google Scholar
    • Export Citation
  • McInnes, H., J. Kristiansen, J. E. Kristjánsson, and H. Schyberg, 2011: The role of horizontal resolution for polar low simulations. Quart. J. Roy. Meteor. Soc., 137, 16741687, https://doi.org/10.1002/qj.849.

    • Search Google Scholar
    • Export Citation
  • Mittal, R., M. Tewari, C. Radhakrishnan, P. Ray, T. Singh, and A. K. Nickerson, 2019: Response of Tropical Cyclone Phailin (2013) in the Bay of Bengal to climate perturbations. Climate Dyn., 53, 20132030, https://doi.org/10.1007/s00382-019-04761-w.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and B. F. Farrell, 1992: Polar low dynamics. J. Atmos. Sci., 49, 24842505, https://doi.org/10.1175/1520-0469(1992)049<2484:PLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moreno-Ibáñez, M., R. Laprise, and P. Gachon, 2021: Recent advances in polar low research: Current knowledge, challenges and future perspectives. Tellus, 73A, 1890412, https://doi.org/10.1080/16000870.2021.1890412.

    • Search Google Scholar
    • Export Citation
  • Nakamura, R., and M. Mäll, 2021: Pseudo global warming sensitivity experiments of subtropical Cyclone Anita (2010) under RCP 8.5 scenario. J. Geophys. Res. Atmos., 126, e2021JD035261, https://doi.org/10.1029/2021JD035261.

    • Search Google Scholar
    • Export Citation
  • Nakamura, R., T. Shibayama, M. Esteban, and T. Iwamoto, 2016: Future typhoon and storm surges under different global warming scenarios: Case Study of Typhoon Haiyan (2013). Nat. Hazards, 82, 16451681, https://doi.org/10.1007/s11069-016-2259-3.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 Model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, L. S., and Coauhtors, 2022: Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, e2021MS002871, https://doi.org/10.1029/2021MS002871.

    • Search Google Scholar
    • Export Citation
  • Neumann, C., 1993: Global overview. Global guide to tropical cyclone forecasting. WMO/TC-560, Rep. TCP-31, 42 pp.

  • Nielsen, N. W., 1997: An early-autumn polar low formation over the Norwegian Sea. J. Geophys. Res., 102, 13 95513 973, https://doi.org/10.1029/97JD00281.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1990: A model-based diagnostic study of the development and maintenance mechanism of two polar lows. Tellus, 42A, 92108, https://doi.org/10.3402/tellusa.v42i1.11863.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., and E. A. Rasmussen, 1992: A most beautiful polar low. A case study of a polar low development in the bear island region. Tellus, 44A, 8199, https://doi.org/10.3402/tellusa.v44i2.14947.

    • Search Google Scholar
    • Export Citation
  • Økland, H., 1987: Heating by organized convection as a source of polar low intensification. Tellus, 39A, 397407, https://doi.org/10.3402/tellusa.v39i4.11769.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2017: A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air–sea heat fluxes. J. Climate, 30, 27172737, https://doi.org/10.1175/JCLI-D-16-0605.1.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and M. F. Wehner, 2018: Anthropogenic influences on major tropical cyclone events. Nature, 563, 339346, https://doi.org/10.1038/s41586-018-0673-2.

    • Search Google Scholar
    • Export Citation
  • Pörtner, H.-O., D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, and N. Weyer, 2019: The Ocean and Cryosphere in a Changing Climate. Cambridge University Press, 1155 pp.

  • Rasmussen, E., 1985: A case study of a polar low development over the Barents Sea. Tellus, 37A, 407418, https://doi.org/10.3402/tellusa.v37i5.11685.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and C. N. Duncan, 1987: Baroclinic instability as a mechanism for the serial development of polar lows: A case study. Tellus, 39A, 376384, https://doi.org/10.3402/tellusa.v39i4.11766.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Search Google Scholar
    • Export Citation
  • Sergeev, D., I. A. Renfrew, and T. Spengler, 2018: Modification of polar low development by orography and sea ice. Mon. Wea. Rev., 146, 33253341, https://doi.org/10.1175/MWR-D-18-0086.1.

    • Search Google Scholar
    • Export Citation
  • Shu, Q., Q. Wang, Z. Song, and F. Qiao, 2021: The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nat. Commun., 12, 2966, https://doi.org/10.1038/s41467-021-23321-7.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E.-P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, L01707, https://doi.org/10.1029/2008GL036320.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and M. Li, 2021: Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity. Ann. N. Y. Acad. Sci., 1504, 167186, https://doi.org/10.1111/nyas.14673.

    • Search Google Scholar
    • Export Citation
  • Singh, V. K., M. K. Roxy, and M. Deshpande, 2021: Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe Cyclone Fani. Sci. Rep., 11, 3607, https://doi.org/10.1038/s41598-021-82680-9.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, https://doi.org/10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2022: Nordic seas heat loss, Atlantic inflow, and Arctic sea ice cover over the last century. Rev. Geophys., 60, e2020RG000725, https://doi.org/10.1029/2020RG000725.

    • Search Google Scholar
    • Export Citation
  • Stoll, P. J., 2022: A global climatology of polar lows investigated for local differences and wind-shear environments. Wea. Climate Dyn., 3, 483504, https://doi.org/10.5194/wcd-3-483-2022.

    • Search Google Scholar
    • Export Citation
  • Stoll, P. J., R. G. Graversen, G. Noer, and K. Hodges, 2018: An objective global climatology of polar lows based on reanalysis data. Quart. J. Roy. Meteor. Soc., 144, 20992117, https://doi.org/10.1002/qj.3309.

    • Search Google Scholar
    • Export Citation
  • Stoll, P. J., T. M. Valkonen, R. G. Graversen, and G. Noer, 2020: A well-observed polar low analysed with a regional and a global weather-prediction model. Quart. J. Roy. Meteor. Soc., 146, 17401767, https://doi.org/10.1002/qj.3764.

    • Search Google Scholar
    • Export Citation
  • Terpstra, A., T. Spengler, and R. W. Moore, 2015: Idealised simulations of polar low development in an Arctic moist-baroclinic environment. Quart. J. Roy. Meteor. Soc., 141, 19871996, https://doi.org/10.1002/qj.2507.

    • Search Google Scholar
    • Export Citation
  • Tsubouchi, T., K. Våge, B. Hansen, K. M. H. Larsen, S. Østerhus, C. Johnson, S. Jónsson, and H. Valdimarsson, 2021: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat. Climate Change, 11, 2126, https://doi.org/10.1038/s41558-020-00941-3.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and E. A. Rasmussen, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 626 pp.

  • Wang, B., R. L. Elsberry, W. Yuqing, and W. Liguang, 1998: Dynamics in tropical cyclone motion: A review. Chin. J. Atmos. Sci., 22, 535547, https://doi.org/10.3878/j.issn.1006-9895.1998.04.15.

    • Search Google Scholar
    • Export Citation
  • Wu, L., 2021: Effect of atmosphere-wave-ocean/ice interactions on a polar low simulation over the Barents Sea. Atmos. Res., 248, 105183, https://doi.org/10.1016/j.atmosres.2020.105183.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, https://doi.org/10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., J. E. Martin, and G. W. Petty, 2011: Piecewise potential vorticity diagnosis of the development of a polar low over the Sea of Japan. Tellus, 63A, 198211, https://doi.org/10.1111/j.1600-0870.2010.00494.x.

    • Search Google Scholar
    • Export Citation
  • Xu, C.-H., and Y. Xu, 2012: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Ocean. Sci. Lett., 5, 527533, https://doi.org/10.1080/16742834.2012.11447042.

    • Search Google Scholar
    • Export Citation
  • Yadav, J., A. Kumar, and R. Mohan, 2020: Dramatic decline of Arctic sea ice linked to global warming. Nat. Hazards, 103, 26172621, https://doi.org/10.1007/s11069-020-04064-y.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2004: Structure and energetics of non-geostrophic non-hydrostatic baroclinic instability wave with and without convective heating. J. Meteor. Soc. Japan, 82, 12611279, https://doi.org/10.2151/jmsj.2004.1261.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 30443067, https://doi.org/10.1175/JAS4001.1.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., G. Fu, H. Niino, and T. Kato, 2004: A polar low over the Japan Sea on 21 January 1997. Part II: A numerical study. Mon. Wea. Rev., 132, 15521574, https://doi.org/10.1175/1520-0493(2004)132<1552:APLOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, S.-i. I. Watanabe, K. Hodges, M. Zahn, T. Spengler, and I. A. Gurvich, 2016: Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis. J. Climate, 29, 419437, https://doi.org/10.1175/JCLI-D-15-0291.1.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., and H. von Storch, 2010: Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312, https://doi.org/10.1038/nature09388.

    • Search Google Scholar
    • Export Citation
  • Zhuo, W., Y. Yao, D. Luo, I. Simmonds, and F. Huang, 2023: The key atmospheric drivers linking regional Arctic amplification with East Asian cold extremes. Atmos. Res., 283, 106557, https://doi.org/10.1016/j.atmosres.2022.106557.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 230 230 61
Full Text Views 61 61 27
PDF Downloads 75 75 39