Long-Term Climate Impacts of Large Stratospheric Water Vapor Perturbations

Martin Jucker aClimate Change Research Centre and Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Martin Jucker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4227-315X
,
Chris Lucas bBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Chris Lucas in
Current site
Google Scholar
PubMed
Close
, and
Deepashree Dutta aClimate Change Research Centre and Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Deepashree Dutta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The amount of water vapor injected into the stratosphere after the eruption of Hunga Tonga–Hunga Ha’apai (HTHH) was unprecedented, and it is therefore unclear what it might mean for surface climate. We use chemistry–climate model simulations to assess the long-term surface impacts of stratospheric water vapor (SWV) anomalies similar to those caused by HTHH but neglect the relatively minor aerosol loading from the eruption. The simulations show that the SWV anomalies lead to strong and persistent warming of Northern Hemisphere landmasses in boreal winter, and austral winter cooling over Australia, years after eruption, demonstrating that large SWV forcing can have surface impacts on a decadal time scale. We also emphasize that the surface response to SWV anomalies is more complex than simple warming due to greenhouse forcing and is influenced by factors such as regional circulation patterns and cloud feedbacks. Further research is needed to fully understand the multiyear effects of SWV anomalies and their relationship with climate phenomena like El Niño–Southern Oscillation.

Significance Statement

Volcanic eruptions typically cool Earth’s surface by releasing sulfur dioxide, which then converts into aerosols, which reflect sunlight. However, a recent eruption released a significant amount of water vapor—a strong greenhouse gas—into the stratosphere with unknown consequences. This study neglects the aerosol effect and examines the consequences of large stratospheric water vapor anomalies and reveals that surface temperatures across large regions of the world increase by over 1.5°C for several years, although some areas experience cooling close to 1°C. Additionally, the research suggests a potential connection between the eruption and sea surface temperatures in the tropical Pacific, which warrants further investigation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Dutta’s current affiliation: Cambridge University, United Kingdom.

Corresponding author: Martin Jucker, publications@martinjucker.com

Abstract

The amount of water vapor injected into the stratosphere after the eruption of Hunga Tonga–Hunga Ha’apai (HTHH) was unprecedented, and it is therefore unclear what it might mean for surface climate. We use chemistry–climate model simulations to assess the long-term surface impacts of stratospheric water vapor (SWV) anomalies similar to those caused by HTHH but neglect the relatively minor aerosol loading from the eruption. The simulations show that the SWV anomalies lead to strong and persistent warming of Northern Hemisphere landmasses in boreal winter, and austral winter cooling over Australia, years after eruption, demonstrating that large SWV forcing can have surface impacts on a decadal time scale. We also emphasize that the surface response to SWV anomalies is more complex than simple warming due to greenhouse forcing and is influenced by factors such as regional circulation patterns and cloud feedbacks. Further research is needed to fully understand the multiyear effects of SWV anomalies and their relationship with climate phenomena like El Niño–Southern Oscillation.

Significance Statement

Volcanic eruptions typically cool Earth’s surface by releasing sulfur dioxide, which then converts into aerosols, which reflect sunlight. However, a recent eruption released a significant amount of water vapor—a strong greenhouse gas—into the stratosphere with unknown consequences. This study neglects the aerosol effect and examines the consequences of large stratospheric water vapor anomalies and reveals that surface temperatures across large regions of the world increase by over 1.5°C for several years, although some areas experience cooling close to 1°C. Additionally, the research suggests a potential connection between the eruption and sea surface temperatures in the tropical Pacific, which warrants further investigation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Dutta’s current affiliation: Cambridge University, United Kingdom.

Corresponding author: Martin Jucker, publications@martinjucker.com

Supplementary Materials

    • Supplemental Materials (PDF 12.874 MB)
Save
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

    • Search Google Scholar
    • Export Citation
  • Boljka, L., and T. Birner, 2022: Potential impact of tropopause sharpness on the structure and strength of the general circulation. npj Climate Atmos. Sci., 5, 98, https://doi.org/10.1038/s41612-022-00319-6.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Byrne, N. J., and T. G. Shepherd, 2018: Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. J. Climate, 31, 34673483, https://doi.org/10.1175/JCLI-D-17-0557.1.

    • Search Google Scholar
    • Export Citation
  • Carn, S. A., N. A. Krotkov, B. L. Fisher, and C. Li, 2022: Out of the blue: Volcanic SO2 emissions during the 2021–2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga). Front. Earth Sci., 10, 976962, https://doi.org/10.3389/feart.2022.976962.

    • Search Google Scholar
    • Export Citation
  • Carr, J. L., A. Horváth, D. L. Wu, and M. D. Friberg, 2022: Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha’apai eruption of 15 January 2022. Geophys. Res. Lett., 49, e2022GL098131, https://doi.org/10.1029/2022GL098131.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2019: The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett., 46, 69726979, https://doi.org/10.1029/2019GL082883.

    • Search Google Scholar
    • Export Citation
  • de F. Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, https://doi.org/10.1029/1999GL010487.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, https://doi.org/10.1073/pnas.1310344110.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, 236A, 187193, HTTPS://DOI.ORG/10.1098/RSPA.1956.0127.0127.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 68, 499508, https://doi.org/10.2151/jmsj1965.68.4_499.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. Shepherd, and D. Waugh, 2010: SPARC CCMVal report on the evaluation of chemistry-climate models. SPARC Tech. Rep. 5, WMO/TD-40, WCRP-30/2010, 426 pp., http://www.sparc-climate.org/publications/sparc-reports/.

  • Fleming, E. L., P. A. Newman, Q. Liang, and L. D. Oman, 2024: Stratospheric temperature and ozone impacts of the Hunga Tonga-Hunga Ha’apai water vapor injection. J. Geophys. Res. Atmos., 129, e2023JD039298, https://doi.org/10.1029/2023JD039298.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, D., S. C. Sherwood, D. Waugh, V. Dixit, M. H. England, Y.-L. Hwong, and O. Geoffroy, 2023: Midlatitude jet position spread linked to atmospheric convective types. J. Climate, 36, 12471265, https://doi.org/10.1175/JCLI-D-21-0992.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, and M. Jucker, 2020a: The impact of SST biases in the tropical east Pacific and Agulhas Current region on atmospheric stationary waves in the Southern Hemisphere. J. Climate, 33, 93519374, https://doi.org/10.1175/JCLI-D-20-0195.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, M. Jucker, and M. Erez, 2020b: The building blocks of Northern Hemisphere wintertime stationary waves. J. Climate, 33, 56115633, https://doi.org/10.1175/JCLI-D-19-0181.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, A. K., R. Bennartz, K. E. Fauria, and T. Mittal, 2022: Eruption chronology of the December 2021 to January 2022 Hunga Tonga-Hunga Ha’apai eruption sequence. Commun. Earth Environ., 3, 314, https://doi.org/10.1038/s43247-022-00606-3.

    • Search Google Scholar
    • Export Citation
  • Guzewich, S. D., and Coauthors, 2022: Volcanic climate warming through radiative and dynamical feedbacks of SO2 emissions. Geophys. Res. Lett., 49, e2021GL096612, https://doi.org/10.1029/2021GL096612.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., M. Zhang, Y. Xia, Y. Hu, and S.-W. Son, 2016: Is there a stratospheric radiative feedback in global warming simulations? Climate Dyn., 46, 177186, https://doi.org/10.1007/s00382-015-2577-2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Wang, and H. Huang, 2020: Stratospheric water vapor feedback disclosed by a locking experiment. Geophys. Res. Lett., 47, e2020GL087987, https://doi.org/10.1029/2020GL087987.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, S., C. Smith, M. Allen, and R. Grainger, 2023: Tonga eruption increases chance of temporary surface temperature anomaly above 1.5°C. Nat. Climate Change, 13, 127129, https://doi.org/10.1038/s41558-022-01568-2.

    • Search Google Scholar
    • Export Citation
  • Jucker, M., 2019: The surface of an aquaplanet GCM. GitHub, https://doi.org/10.5281/zenodo.3358284.

  • Jucker, M., and E. P. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., S. Abhik, H. H. Hendon, M. Bell, C. Lucas, A. G. Marshall, and E. C. J. Oliver, 2019: On the emerging relationship between the stratospheric quasi-biennial oscillation and the Madden-Julian oscillation. Sci. Rep., 9, 2981, https://doi.org/10.1038/s41598-019-40034-6.

    • Search Google Scholar
    • Export Citation
  • Li, F., and P. Newman, 2020: Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry–Climate Model. Climate Dyn., 55, 15851595, https://doi.org/10.1007/s00382-020-05348-6.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, and D. W. Thompson, 2018: Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos., 123, 12 00212 016, https://doi.org/10.1029/2018JD029321.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2023: Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett., 50, e2023GL103855, https://doi.org/10.1029/2023GL103855.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., M. M. Joshi, K. P. Shine, and A. A. Scaife, 2013: The circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545561, https://doi.org/10.1175/JCLI-D-12-00155.1.

    • Search Google Scholar
    • Export Citation
  • Millán, L., and Coauthors, 2022: The Hunga Tonga-Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett., 49, e2022GL099381, https://doi.org/10.1029/2022GL099381.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, https://doi.org/10.2151/jmsj.80.793.

  • Proud, S. R., A. T. Prata, and S. Schmauß, 2022: The January 2022 eruption of Hunga Tonga-Hunga Ha’apai volcano reached the mesosphere. Science, 378, 554557, https://doi.org/10.1126/science.abo4076.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, R. Ren, T. Wu, and Y. Lu, 2023: Southern Hemisphere response to the quasi-biennial oscillation in the CMIP5/6 models. J. Climate, 36, 26032623, https://doi.org/10.1175/JCLI-D-22-0675.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, https://doi.org/10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., Y. Wang, R. Ueyama, A. Dessler, G. Taha, and W. Yu, 2023a: The estimated climate impact of the Hunga Tonga-Hunga Ha’apai eruption plume. Geophys. Res. Lett., 50, e2023GL104634, https://doi.org/10.1029/2023GL104634.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., Y. Wang, R. Ueyama, G. Taha, and W. Yu, 2023b: The cross equatorial transport of the Hunga Tonga-Hunga Ha’apai eruption plume. Geophys. Res. Lett., 50, e2022GL102443, https://doi.org/10.1029/2022GL102443.

    • Search Google Scholar
    • Export Citation
  • Sellitto, P., and Coauthors, 2022: The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ., 3, 288, https://doi.org/10.1038/s43247-022-00618-z.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, https://doi.org/10.1029/1999RG900008.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and S. Solomon, 2005: Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci., 62, 708715, https://doi.org/10.1175/JAS-3321.1.

    • Search Google Scholar
    • Export Citation
  • Tilmes, S., R. R. Garcia, D. E. Kinnison, A. Gettelman, and P. J. Rasch, 2009: Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res., 114, D12305, https://doi.org/10.1029/2008JD011420.

    • Search Google Scholar
    • Export Citation
  • Tritscher, I., and Coauthors, 2021: Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion. Rev. Geophys., 59, e2020RG000702, https://doi.org/10.1029/2020RG000702.

    • Search Google Scholar
    • Export Citation
  • Vernier, J.-P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., S. Evan, and M. Tully, 2022: Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai. Science, 377, 14441447, https://doi.org/10.1126/science.abq2299.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, and E. K. M. Chang, 2018: Interannual modulation of Northern Hemisphere winter storm tracks by the QBO. Geophys. Res. Lett., 45, 27862794, https://doi.org/10.1002/2017GL076929.

    • Search Google Scholar
    • Export Citation
  • Waters, J. W., and Coauthors, 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 10751092, https://doi.org/10.1109/TGRS.2006.873771.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. G. Yeager, C. Deser, N. Rosenbloom, and G. A. Meehl, 2023: Volcanic forcing degrades multiyear-to-decadal prediction skill in the tropical Pacific. Sci. Adv., 9, eadd9364, https://doi.org/10.1126/sciadv.add9364.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2018: Stratospheric aerosols, polar stratospheric clouds, and polar ozone depletion after the Mount Calbuco eruption in 2015. J. Geophys. Res. Atmos., 123, 12 30812 331, https://doi.org/10.1029/2018JD028974.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2022: Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ., 3, 248, https://doi.org/10.1038/s43247-022-00580-w.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 10720 10720 1623
Full Text Views 698 698 193
PDF Downloads 661 661 133