Impact of Arctic Stratospheric Polar Vortex on Mediterranean Precipitation

Chongyang Zhang aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, School of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Chongyang Zhang in
Current site
Google Scholar
PubMed
Close
,
Jiankai Zhang aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, School of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiankai Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8491-0225
,
Xufan Xia aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, School of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xufan Xia in
Current site
Google Scholar
PubMed
Close
, and
Douwang Li aKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, School of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Douwang Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Mediterranean precipitation has significant implications for the local ecology and human livelihoods. This study explores the impact of the Arctic stratospheric polar vortex on the Mediterranean precipitation during the wet season (winter) using reanalysis data and large-scale ensemble experiments that are forced by anomalous stratospheric polar vortex states. Our findings reveal that total and extreme precipitation over the Mediterranean region are increased under weak polar vortex (WPV) conditions and decreased under strong polar vortex (SPV) conditions. Moisture budget suggests that the changes in vertical motion over the Mediterranean play the dominant role in precipitation changes. It is further found that the tropospheric quasi-stationary wave train propagating from Greenland to the European continent is enhanced under WPV conditions, accompanied by warming advection over the eastern Mediterranean and vorticity advection in the upper troposphere over the whole region of the Mediterranean. Consequently, the vertical motion and precipitation there are enhanced. The southward shift of the Atlantic jet stream under WPV conditions leads to enhanced moisture transport toward the Mediterranean, providing a favorable moisture source for precipitation. In addition, the background baroclinicity in the lower troposphere around the northern Mediterranean is enhanced under WPV conditions, intensifying frontogenesis and cyclonic activities, which are commonly accompanied by intensified precipitation. These results are consistent with earlier literature and suggest that the changes in the stratospheric polar vortex may be used as a potential predicting factor for Mediterranean precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiankai Zhang, jkzhang@lzu.edu.cn

Abstract

The Mediterranean precipitation has significant implications for the local ecology and human livelihoods. This study explores the impact of the Arctic stratospheric polar vortex on the Mediterranean precipitation during the wet season (winter) using reanalysis data and large-scale ensemble experiments that are forced by anomalous stratospheric polar vortex states. Our findings reveal that total and extreme precipitation over the Mediterranean region are increased under weak polar vortex (WPV) conditions and decreased under strong polar vortex (SPV) conditions. Moisture budget suggests that the changes in vertical motion over the Mediterranean play the dominant role in precipitation changes. It is further found that the tropospheric quasi-stationary wave train propagating from Greenland to the European continent is enhanced under WPV conditions, accompanied by warming advection over the eastern Mediterranean and vorticity advection in the upper troposphere over the whole region of the Mediterranean. Consequently, the vertical motion and precipitation there are enhanced. The southward shift of the Atlantic jet stream under WPV conditions leads to enhanced moisture transport toward the Mediterranean, providing a favorable moisture source for precipitation. In addition, the background baroclinicity in the lower troposphere around the northern Mediterranean is enhanced under WPV conditions, intensifying frontogenesis and cyclonic activities, which are commonly accompanied by intensified precipitation. These results are consistent with earlier literature and suggest that the changes in the stratospheric polar vortex may be used as a potential predicting factor for Mediterranean precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiankai Zhang, jkzhang@lzu.edu.cn
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-(37541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Climate Dyn., 50, 18191839, https://doi.org/10.1007/s00382-017-3724-8.

    • Search Google Scholar
    • Export Citation
  • Babaousmail, H., R. Hou, B. Ayugi, K. T. C. L. K. Sian, M. Ojara, R. Mumo, A. Chehbouni, and V. Ongoma, 2022: Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models. Int. J. Climatol., 42, 72807297, https://doi.org/10.1002/joc.7644.

    • Search Google Scholar
    • Export Citation
  • Baker, A. J., and Coauthors, 2019: Enhanced climate change response of wintertime North Atlantic circulation, cyclonic activity, and precipitation in a 25-km-resolution global atmospheric model. J. Climate, 32, 77637781, https://doi.org/10.1175/JCLI-D-19-0054.1.

    • Search Google Scholar
    • Export Citation
  • Bell, B., and Coauthors, 2021: The ERA5 global reanalysis: Preliminary extension to 1950. Quart. J. Roy. Meteor. Soc., 147, 41864227, https://doi.org/10.1002/qj.4174.

    • Search Google Scholar
    • Export Citation
  • Beranová, R., and J. Kyselý, 2016: Links between circulation indices and precipitation in the Mediterranean in an ensemble of regional climate models. Theor. Appl. Climatol., 123, 693701, https://doi.org/10.1007/s00704-015-1381-6.

    • Search Google Scholar
    • Export Citation
  • Brogli, R., S. L. Sørland, N. Kröner, and C. Schär, 2019: Causes of future Mediterranean precipitation decline depend on the season. Environ. Res. Lett., 14, 11407, https://doi.org/10.1088/1748-9326/ab4438.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, https://doi.org/10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colmet-Daage, A., E. Sanchez-Gomez, S. Ricci, C. Llovel, V. B. Estupina, P. Quintana-Seguí, M. C. Llasat, and E. Servat, 2018: Evaluation of uncertainties in mean and extreme precipitation under climate change for northwestern Mediterranean watersheds from high-resolution Med and Euro-CORDEX ensembles. Hydrol. Earth Syst. Sci., 22, 673687, https://doi.org/10.5194/hess-22-673-2018.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2018: Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Climate Change, 8, 972980, https://doi.org/10.1038/s41558-018-0299-2.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, https://doi.org/10.1002/2015GL063298.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and A. H. Butler, 2020: Stratospheric drivers of extreme events at the Earth’s surface. Commun. Earth Environ., 1, 59, https://doi.org/10.1038/s43247-020-00060-z.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2009: Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys. Res. Lett., 36, L18703, https://doi.org/10.1029/2009GL039334.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2018: Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Climate Dyn., 51, 12371257, https://doi.org/10.1007/s00382-016-3083-x.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 38273844, https://doi.org/10.1175/MWR-D-18-0101.1.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., P. Drobinski, M. Vrac, S. Bastin, C. Lebeaupin-Brossier, M. Stéfanon, M. Borga, and J.-C. Calvet, 2013: Precipitation and temperature space–time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Climate Dyn., 40, 26872705, https://doi.org/10.1007/s00382-012-1558-y.

    • Search Google Scholar
    • Export Citation
  • Gaetani, M., M. Baldi, G. A. Dalu, and G. Maracchi, 2011: Jetstream and rainfall distribution in the Mediterranean region. Nat Hazard Earth Syst. Sci., 11, 24692481, https://doi.org/10.5194/nhess-11-2469-2011.

    • Search Google Scholar
    • Export Citation
  • Galfi, V. M., and G. Messori, 2023: Persistent anomalies of the North Atlantic jet stream and associated surface extremes over Europe. Environ. Res. Lett., 18, 024017, https://doi.org/10.1088/1748-9326/acaedf.

    • Search Google Scholar
    • Export Citation
  • Gusain, A., H. Vittal, S. Kulkarni, S. Ghosh, and S. Karmakar, 2019: Role of vertical velocity in improving finer scale statistical downscaling for projection of extreme precipitation. Theor. Appl. Climatol., 137, 791804, https://doi.org/10.1007/s00704-018-2615-1.

    • Search Google Scholar
    • Export Citation
  • Hall, R. J., D. M. Mitchell, W. J. M. Seviour, and C. J. Wright, 2021: Tracking the stratosphere-to-surface impact of sudden stratospheric warmings. J. Geophys. Res. Atmos., 126, e2020JD033881, https://doi.org/10.1029/2020JD033881.

    • Search Google Scholar
    • Export Citation
  • Hanley, J., and R. Caballero, 2012: Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis dataset. Quart. J. Roy. Meteor. Soc., 138, 612625, https://doi.org/10.1002/qj.948.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • He, Y., X. Zhu, Z. Sheng, and M. He, 2023: Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming. Geophys Res Lett., 50, e2023GL104839, https://doi.org/10.1029/2023GL104839.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., S. Seubert, A. Paxian, G. Vogt, H. Paeth, and J. Jacobeit, 2013: Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theor. Appl. Climatol., 111 (1–2), 120, https://doi.org/10.1007/s00704-012-0639-5.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942961, https://doi.org/10.1175/2010JCLI3834.1.

    • Search Google Scholar
    • Export Citation
  • Insua-Costa, D., M. Senande-Rivera, M. C. Llasat, and G. Miguez-Macho, 2022: A global perspective on western Mediterranean precipitation extremes. npj Climate Atmos. Sci., 5, 9, https://doi.org/10.1038/s41612-022-00234-w.

    • Search Google Scholar
    • Export Citation
  • Ionita, M., 2014: The impact of the East Atlantic/Western Russia pattern on the hydroclimatology of Europe from mid-winter to late spring. Climate, 2, 296309, https://doi.org/10.3390/cli2040296.

    • Search Google Scholar
    • Export Citation
  • Jacobeit, J., E. Hertig, S. Seubert, and K. Lutz, 2014: Statistical downscaling for climate change projections in the Mediterranean region: Methods and results. Reg. Environ. Change, 14, 18911906, https://doi.org/10.1007/s10113-014-0605-0.

    • Search Google Scholar
    • Export Citation
  • Jonkman, S. N., 2005: Global perspectives on loss of human life caused by floods. Nat. Hazards, 34, 151175, https://doi.org/10.1007/s11069-004-8891-3.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 14591470, https://doi.org/10.1002/qj.3017.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762781, https://doi.org/10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, A. D., A. H. Butler, M. Jucker, N. O. Earl, and I. Rudeva, 2019: Observed relationships between sudden stratospheric warmings and European climate extremes. J. Geophys. Res. Atmos., 124, 13 94313 961, https://doi.org/10.1029/2019JD030480.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., S. H. Lee, A. H. Butler, D. I. V. Domeisen, and C. O. Wulff, 2022: Diverse surface signatures of stratospheric polar vortex anomalies. J. Geophys. Res. Atmos., 127, e2022JD037422, https://doi.org/10.1029/2022JD037422.

    • Search Google Scholar
    • Export Citation
  • Kotsias, G., C. J. Lolis, N. Hatzianastassiou, V. Levizzani, and A. Bartzokas, 2020: On the connection between large-scale atmospheric circulation and winter GPCP precipitation over the Mediterranean region for the period 1980-2017. Atmos. Res., 233, 104714, https://doi.org/10.1016/j.atmosres.2019.104714.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., and P. Alpert, 2005: Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theor. Appl. Climatol., 82, 2739, https://doi.org/10.1007/s00704-004-0119-7.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., P. Kishcha, and P. Alpert, 2002: Decadal trends of main Eurasian oscillations and the eastern Mediterranean precipitation. Theor. Appl. Climatol., 72, 209220, https://doi.org/10.1007/s007040200021.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., J. S. Breitgand, S. Gualdi, and S. B. Feldstein, 2014: Teleconnection-extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol., 117, 679692, https://doi.org/10.1007/s00704-013-1036-4.

    • Search Google Scholar
    • Export Citation
  • Liang, W., and M. Zhang, 2021: Summer and winter precipitation in East Asia scale with global warming at different rates. Commun. Earth Environ., 2, 150, https://doi.org/10.1038/s43247-021-00219-2.

    • Search Google Scholar
    • Export Citation
  • Liang, Z., J. Rao, D. Guo, Q. Lu, and C. Shi, 2023: Northern winter stratospheric polar vortex regimes and their possible influence on the extratropical troposphere. Climate Dyn., 60, 31673186, https://doi.org/10.1007/s00382-022-06494-9.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and L. Scarascia, 2018: The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change, 18, 14811493, https://doi.org/10.1007/s10113-018-1290-1.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. M. Vicente-Serrano, E. Moran-Tejeda, J. Lorenzo-Lacruz, A. Kenawy, and M. Beniston, 2011: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global Planet. Change, 77, 6276, https://doi.org/10.1016/j.gloplacha.2011.03.003.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., M. V. Struglia, N. Zeng, and K.-M. Lau, 2002: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15, 16741690, https://doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., Y. T. Pan, N. Zeng, and A. Alessandri, 2015: Long-term climate change in the Mediterranean region in the midst of decadal variability. Climate Dyn., 44, 14371456, https://doi.org/10.1007/s00382-015-2487-3.

    • Search Google Scholar
    • Export Citation
  • Mastrantonas, N., P. Herrera-Lormendez, L. Magnusson, F. Pappenberger, and J. Matschullat, 2021: Extreme precipitation events in the Mediterranean: Spatiotemporal characteristics and connection to large-scale atmospheric flow patterns. Int. J. Climatol., 41, 27102728, https://doi.org/10.1002/joc.6985.

    • Search Google Scholar
    • Export Citation
  • McKenna, C. M., and A. C. Maycock, 2022: The role of the North Atlantic Oscillation for projections of winter mean precipitation in Europe. Geophys. Res. Lett., 49, e2022GL099083, https://doi.org/10.1029/2022GL099083.

    • Search Google Scholar
    • Export Citation
  • Messmer, M., and I. Simmonds, 2021: Global analysis of cyclone-induced compound precipitation and wind extreme events. Wea. Climate Extremes, 32, 100324, https://doi.org/10.1016/j.wace.2021.100324.

    • Search Google Scholar
    • Export Citation
  • Monnin, E., M. Kretschmer, and I. Polichtchouk, 2022: The role of the timing of sudden stratospheric warmings for precipitation and temperature anomalies in Europe. Int. J. Climatol., 42, 34483462, https://doi.org/10.1002/joc.7426.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Nie, J., P. Dai, and A. H. Sobel, 2020: Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 117, 87578763, https://doi.org/10.1073/pnas.1913584117.

    • Search Google Scholar
    • Export Citation
  • Nissen, K. M., G. C. Leckebusch, J. G. Pinto, D. Renggli, S. Ulbrich, and U. Ulbrich, 2010: Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst. Sci., 10, 13791391, https://doi.org/10.5194/nhess-10-1379-2010.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, https://doi.org/10.1175/2009JCLI2701.1.

    • Search Google Scholar
    • Export Citation
  • Oueslati, B., P. Yiou, and A. Jézéquel, 2019: Revisiting the dynamic and thermodynamic processes driving the record-breaking January 2014 precipitation in the southern UK. Sci. Rep., 9, 2859, https://doi.org/10.1038/s41598-019-39306-y.

    • Search Google Scholar
    • Export Citation
  • Peña-Angulo, D., and Coauthors, 2020: Long-term precipitation in southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ. Res. Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 49024909, https://doi.org/10.1175/JCLI-3247.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., and Coauthors, 2013: Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeor., 14, 906922, https://doi.org/10.1175/JHM-D-12-083.1.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rupp, P., and T. Birner, 2021: Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles. Wea. Climate Dyn., 2, 111128, https://doi.org/10.5194/wcd-2-111-2021.

    • Search Google Scholar
    • Export Citation
  • Santos, J. A., J. Corte-Real, U. Ulbrich, and J. Palutikof, 2007: European winter precipitation extremes and large-scale circulation: A coupled model and its scenarios. Theor. Appl. Climatol., 87, 85102, https://doi.org/10.1007/s00704-005-0224-2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, K., T. Tanhua, J. Chiggiato, D. Velaoras, S. A. Josey, J. G. Lafuente, and M. Vargas-Yáñez, 2023: The forcings of the Mediterranean Sea and the physical properties of its water masses. Oceanography of the Mediterranean Sea, K. Schroeder and J. Chiggiato, Eds., Elsevier, 93–123.

  • Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, https://doi.org/10.1175/JCLI-D-13-00446.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., H. B. Liu, Y. Kushnir, T. J. Osborn, I. R. Simpson, C. R. Kelley, and J. Nakamura, 2020: Mechanisms of winter precipitation variability in the European-Mediterranean region associated with the North Atlantic Oscillation. J. Climate, 33, 71797196, https://doi.org/10.1175/JCLI-D-20-0011.1.

    • Search Google Scholar
    • Export Citation
  • Sudharsan, N., S. Karmakar, H. J. Fowler, and V. Hari, 2020: Large-scale dynamics have greater role than thermodynamics in driving precipitation extremes over India. Climate Dyn., 55, 26032614, https://doi.org/10.1007/s00382-020-05410-3.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., E. Xoplaki, D. Maraun, F. G. Kuglitsch, H. Wanner, and J. Luterbacher, 2010: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst. Sci., 10, 10371050, https://doi.org/10.5194/nhess-10-1037-2010.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., and S. Somot, 2018: Future evolution of extreme precipitation in the Mediterranean. Climatic Change, 151, 289302, https://doi.org/10.1007/s10584-018-2300-5.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 2000: Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys. Res. Lett., 27, 29132916, https://doi.org/10.1029/2000GL011526.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., and Coauthors, 2006: Relations between variability in the Mediterranean region and mid-latitude variability. Developments in Earth and Environmental Sciences, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Elsevier, 179–226.

  • Tuel, A., and E. A. B. Eltahir, 2020: Why is the Mediterranean a climate change hot spot? J. Climate, 33, 58295843, https://doi.org/10.1175/JCLI-D-19-0910.1.

    • Search Google Scholar
    • Export Citation
  • Vittal, H., S. Ghosh, S. Karmakar, A. Pathak, and R. Murtugudde, 2016: Lack of dependence of Indian Summer Monsoon Rainfall extremes on temperature: An observational evidence. Sci. Rep., 6, 31039, https://doi.org/10.1038/srep31039.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., and Coauthors, 2001: North Atlantic Oscillation–concepts and studies. Surv. Geophys., 22, 321381, https://doi.org/10.1023/A:1014217317898.

    • Search Google Scholar
    • Export Citation
  • Weinberger, I., C. I. Garfinkel, I. P. White, and T. Birner, 2021: The efficiency of upward wave propagation near the tropopause: Importance of the form of the refractive index. J. Atmos. Sci., 78, 26052617, https://doi.org/10.1175/JAS-D-20-0267.1.

    • Search Google Scholar
    • Export Citation
  • Weinberger, I., C. I. Garfinkel, N. Harnik, and N. Paldor, 2022: Transmission and reflection of upward-propagating Rossby waves in the lowermost stratosphere: Importance of the tropopause inversion layer. J. Atmos. Sci., 79, 32633274, https://doi.org/10.1175/JAS-D-22-0025.1.

    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, P. Hitchcock, and J. Rao, 2020: The generic nature of the tropospheric response to sudden stratospheric warmings. J. Climate, 33, 55895610, https://doi.org/10.1175/JCLI-D-19-0697.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, C. B., V. Demir, M. F. Sevimli, F. Demir, and M. Yakar, 2021: Trend analysis of temperature and precipitation in Mediterranean region. Adv. GIS, 1, 1521.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., M. K. Hawcroft, L. Shaffrey, E. Black, and D. J. Brayshaw, 2015: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Climate Dyn., 45, 17271738, https://doi.org/10.1007/s00382-014-2426-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Zhang, X. Xia, J. Song, D. Li, and W. Tian, 2024: Impacts of stratospheric polar vortex changes on tropospheric blockings over the Atlantic region. Climate Dyn., https://doi.org/10.1007/s00382-023-07092-z, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Zheng, M. Xu, Q. Yin, S. Zhao, W. Tian, and Z. Yang, 2022: Impacts of stratospheric polar vortex changes on wintertime precipitation over the Northern Hemisphere. Climate Dyn., 58, 31553171, https://doi.org/10.1007/s00382-021-06088-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2023: Impacts of the Arctic stratospheric polar vortex changes on the frontogenesis over the northern middle latitudes during winter. Atmos. Res., 289, 106751, https://doi.org/10.1016/j.atmosres.2023.106751.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., W. Tian, J. Zhang, J. Huang, F. Xie, and M. Xu, 2019: The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies. J. Climate, 32, 18571873, https://doi.org/10.1175/JCLI-D-18-0574.1.

    • Search Google Scholar
    • Export Citation
  • Zittis, G., P. Hadjinicolaou, M. Klangidou, Y. Proestos, and J. Lelieveld, 2019: A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Change, 19, 26212635, https://doi.org/10.1007/s10113-019-01565-w.

    • Search Google Scholar
    • Export Citation
  • Zittis, G., A. Bruggeman, and J. Lelieveld, 2021: Revisiting future extreme precipitation trends in the Mediterranean. Wea. Climate Extremes, 34, 100380, https://doi.org/10.1016/j.wace.2021.100380.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 268 268 183
Full Text Views 71 71 50
PDF Downloads 84 84 63