Influence of the Atlantic and Pacific Multidecadal Variability on Arctic Sea Ice in Pacemaker Simulations during 1920–2013

Zhaoxiangrui He aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Zhaoxiangrui He in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8206-6713
,
Aiguo Dai aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
,
Brian E. J. Rose aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian E. J. Rose in
Current site
Google Scholar
PubMed
Close
, and
Mathias Vuille aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Mathias Vuille in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) can influence Arctic sea ice and modulate its trend, but to what extent the AMV and PMV can affect Arctic sea ice and which processes are dominant are not well understood. Here, we analyze the Community Earth System Model, version 1, idealized and time-varying pacemaker ensemble simulations to investigate these issues. These experiments show that the sea ice concentration varies mainly over the marginal Arctic Ocean, while the sea ice thickness variations occur over the entire Arctic Ocean. The internal components of AMV and PMV can enhance or weaken the decadal sea ice loss rates over the marginal Arctic Ocean by more than 50%. The AMV- or PMV-induced anomalous atmospheric energy transport and downward longwave radiation related to low clouds (thermodynamical processes) and sea ice motion (dynamical processes) contribute to the Arctic surface air temperature and sea ice concentration and thickness changes. Anomalous oceanic heat flux is mainly a response to rather than a cause of sea ice variations. The dynamic processes contribute to the winter Arctic sea ice variations as much as the thermodynamic processes, but they contribute less (more) to the summer Arctic sea ice variability than the thermodynamic processes over the marginal Arctic Ocean (parts of the central Arctic Ocean). Sea ice loss enhances air–sea heat fluxes, which cause oceanic heat convergence and warm near-surface air and the lower troposphere, which in turn melt more sea ice.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoxiangrui He, hzxrkb@gmail.com

Abstract

The Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) can influence Arctic sea ice and modulate its trend, but to what extent the AMV and PMV can affect Arctic sea ice and which processes are dominant are not well understood. Here, we analyze the Community Earth System Model, version 1, idealized and time-varying pacemaker ensemble simulations to investigate these issues. These experiments show that the sea ice concentration varies mainly over the marginal Arctic Ocean, while the sea ice thickness variations occur over the entire Arctic Ocean. The internal components of AMV and PMV can enhance or weaken the decadal sea ice loss rates over the marginal Arctic Ocean by more than 50%. The AMV- or PMV-induced anomalous atmospheric energy transport and downward longwave radiation related to low clouds (thermodynamical processes) and sea ice motion (dynamical processes) contribute to the Arctic surface air temperature and sea ice concentration and thickness changes. Anomalous oceanic heat flux is mainly a response to rather than a cause of sea ice variations. The dynamic processes contribute to the winter Arctic sea ice variations as much as the thermodynamic processes, but they contribute less (more) to the summer Arctic sea ice variability than the thermodynamic processes over the marginal Arctic Ocean (parts of the central Arctic Ocean). Sea ice loss enhances air–sea heat fluxes, which cause oceanic heat convergence and warm near-surface air and the lower troposphere, which in turn melt more sea ice.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoxiangrui He, hzxrkb@gmail.com
Save
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, https://doi.org/10.1175/JCLI-D-11-00290.1.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, https://doi.org/10.1038/ngeo467.

    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., T. Schneider, I. Eisenman, and R. C. J. Wills, 2021: Constraining the date of a seasonally ice-free Arctic using a simple model. Geophys. Res. Lett., 48, e2021GL094309, https://doi.org/10.1029/2021GL094309.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. K., G. J. Hakim, and E. Blanchard-Wrigglesworth, 2020: Arctic sea-ice variability during the instrumental era. Geophys. Res. Lett., 47, e2019GL086843, https://doi.org/10.1029/2019GL086843.

    • Search Google Scholar
    • Export Citation
  • Cai, Q., J. Wang, D. Beletsky, J. Overland, M. Ikeda, and L. Wan, 2021: Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett., 16, 034015, https://doi.org/10.1088/1748-9326/abdb5f.

    • Search Google Scholar
    • Export Citation
  • Castruccio, F. S., Y. Ruprich-Robert, S. G. Yeager, G. Danabasoglu, R. Msadek, and T. L. Delworth, 2019: Modulation of Arctic sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Climate, 32, 14191441, https://doi.org/10.1175/JCLI-D-18-0307.1.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett., 36, L14801, https://doi.org/10.1029/2009GL038777.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37, L08703, https://doi.org/10.1029/2010GL042793.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and M. T. Jenkins, 2023: Relationships among Arctic warming, sea-ice loss, stability, lapse rate feedback, and Arctic amplification. Climate Dyn., 61, 52175232, https://doi.org/10.1007/s00382-023-06848-x.

    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, https://doi.org/10.1038/nclimate2605.

    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Search Google Scholar
    • Export Citation
  • Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett., 7, 034011, https://doi.org/10.1088/1748-9326/7/3/034011.

    • Search Google Scholar
    • Export Citation
  • Deng, J., and A. Dai, 2022: Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nat. Commun., 13, 2100, https://doi.org/10.1038/s41467-022-29810-7.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Guo, and F. Lehner, 2017: The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett., 44, 79457954, https://doi.org/10.1002/2017GL074273.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2019: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci., 12, 2833, https://doi.org/10.1038/s41561-018-0256-8.

    • Search Google Scholar
    • Export Citation
  • Dong, B., A. Dai, M. Vuille, and O. Elison Timm, 2018: Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific oscillation. J. Climate, 31, 73377361, https://doi.org/10.1175/JCLI-D-17-0663.1.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., T. Vihma, and E. Maksimovich, 2014: Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmos. Chem. Phys., 14, 13 57113 600, https://doi.org/10.5194/acp-14-13571-2014.

    • Search Google Scholar
    • Export Citation
  • England, M., A. Jahn, and L. Polvani, 2019: Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Climate, 32, 40394053, https://doi.org/10.1175/JCLI-D-18-0864.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008a: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312, https://doi.org/10.1175/2007JCLI1935.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008b: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Search Google Scholar
    • Export Citation
  • He, C., A. C. Clement, S. M. Kramer, M. A. Cane, J. M. Klavans, T. M. Fenske, and L. N. Murphy, 2023: Tropical Atlantic multidecadal variability is dominated by external forcing. Nature, 622, 521527, https://doi.org/10.1038/s41586-023-06489-4.

    • Search Google Scholar
    • Export Citation
  • Heede, U. K., and A. V. Fedorov, 2021: Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Climate Change, 11, 696703, https://doi.org/10.1038/s41558-021-01101-x.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hua, W., A. Dai, and M. Qin, 2018: Contributions of internal variability and external forcing to the recent Pacific decadal variations. Geophys. Res. Lett., 45, 70847092, https://doi.org/10.1029/2018GL079033.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, M., and A. Dai, 2021: The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett., 48, e2021GL094599, https://doi.org/10.1029/2021GL094599.

    • Search Google Scholar
    • Export Citation
  • Jenkins, M. T., A. Dai, and C. Deser, 2023: Seasonal variations and spatial patterns of Arctic cloud changes in association with sea ice loss during 1950–2019 in ERA5. J. Climate, 37, 735754, https://doi.org/10.1175/JCLI-D-23-0117.1.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, M. Tjernström, and R. Bintanja, 2016: The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Climate, 29, 11431159, https://doi.org/10.1175/JCLI-D-15-0238.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708, https://doi.org/10.1029/2011GL048008.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, N. P. Gillett, D. Notz, and E. Malinina, 2023: Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun., 14, 3139, https://doi.org/10.1038/s41467-023-38511-8.

    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec.

    • Search Google Scholar
    • Export Citation
  • Lehner, F., and C. Deser, 2023: Origin, importance, and predictive limits of internal climate variability. Environ. Res. Climate, 2, 023001, https://doi.org/10.1088/2752-5295/accf30.

    • Search Google Scholar
    • Export Citation
  • Lin, P., Z. Yu, J. , M. Ding, A. Hu, and H. Liu, 2019: Two regimes of Atlantic multidecadal oscillation: Cross-basin dependent or Atlantic-intrinsic. Sci. Bull., 64, 198204, https://doi.org/10.1016/j.scib.2018.12.027.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Search Google Scholar
    • Export Citation
  • Liu, W., A. Fedorov, and F. Sévellec, 2019: The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J. Climate, 32, 977996, https://doi.org/10.1175/JCLI-D-18-0231.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2021: Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nat. Commun., 12, 1519, https://doi.org/10.1038/s41467-021-21830-z.

    • Search Google Scholar
    • Export Citation
  • Livina, V. N., and T. M. Lenton, 2013: A recent tipping point in the Arctic sea-ice cover: Abrupt and persistent increase in the seasonal cycle since 2007. Cryosphere, 7, 275286, https://doi.org/10.5194/tc-7-275-2013.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, https://doi.org/10.1175/2011JCLI4002.1.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. T. Y. Chung, J. M. Arblaster, M. M. Holland, and C. M. Bitz, 2018: Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett., 45, 11 32611 333, https://doi.org/10.1029/2018GL079989.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2021: Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci., 14, 3642, https://doi.org/10.1038/s41561-020-00669-x.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, https://doi.org/10.1029/2008GL035725.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. L., J. E. Kay, W. R. Frey, H. Chepfer, and R. Guzman, 2019: Cloud response to Arctic sea ice loss and implications for future feedback in the CESM1 climate model. J. Geophys. Res. Atmos., 124, 10031020, https://doi.org/10.1029/2018JD029142.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Mueller, B. L., N. P. Gillett, A. H. Monahan, and F. W. Zwiers, 2018: Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas, and anthropogenic aerosol forcing. J. Climate, 31, 77717787, https://doi.org/10.1175/JCLI-D-17-0552.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, L. N., J. M. Klavans, A. C. Clement, and M. A. Cane, 2021: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy. J. Climate, 34, 48354849, https://doi.org/10.1175/JCLI-D-20-0167.1.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Marotzke, 2012: Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett., 39, L08502, https://doi.org/10.1029/2012GL051094.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750, https://doi.org/10.1126/science.aag2345.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and SIMIP Community, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.

    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, L. H. Smedsrud, and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. J. Climate, 31, 49174932, https://doi.org/10.1175/JCLI-D-17-0427.1.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2014: Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Climate, 27, 93779382, https://doi.org/10.1175/JCLI-D-14-00605.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., A. Alam, J. A. Maslanik, J. A. Curry, and R. S. Stone, 2003: Surface characteristics and atmospheric footprint of springtime Arctic leads at SHEBA. J. Geophys. Res., 108, 8051, https://doi.org/10.1029/2000JC000473.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., J. E. Walsh, and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Amer. Meteor. Soc., 93, 145151, https://doi.org/10.1175/BAMS-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Qin, M., A. Dai, and W. Hua, 2020a: Quantifying contributions of internal variability and external forcing to Atlantic multidecadal variability since 1870. Geophys. Res. Lett., 47, e2020GL089504, https://doi.org/10.1029/2020GL089504.

    • Search Google Scholar
    • Export Citation
  • Qin, M., A. Dai, and W. Hua, 2020b: Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Sci. Adv., 6, eabb0425, https://doi.org/10.1126/sciadv.abb0425.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres, P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans, 122, 726744, https://doi.org/10.1002/2016JC012278.

    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., K. R. Wood, and J. Zhang, 2019: Arctic sea ice volume variability over 1901–2010: A model-based reconstruction. J. Climate, 32, 47314752, https://doi.org/10.1175/JCLI-D-19-0008.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and C. Deser, 2019: Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophys. Res. Lett., 46, 22222231, https://doi.org/10.1029/2018GL081393.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Si, D., A. Hu, D. Jiang, and X. Lang, 2023: Atmospheric teleconnection associated with the Atlantic multidecadal variability in summer: Assessment of the CESM1 model. Climate Dyn., 60, 10431060, https://doi.org/10.1007/s00382-022-06331-z.

    • Search Google Scholar
    • Export Citation
  • Singh, H. A., P. J. Rasch, and B. E. J. Rose, 2017: Increased ocean heat convergence into the high latitudes with CO2 doubling enhances polar-amplified warming. Geophys. Res. Lett., 44, 10 58310 591, https://doi.org/10.1002/2017GL074561.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, https://doi.org/10.1038/nclimate3058.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2020: North Atlantic climate far more predictable than models imply. Nature, 583, 796800, https://doi.org/10.1038/s41586-020-2525-0.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Song, M., L. Wei, and Z. Wang, 2016: Quantifying the contribution of natural variability to September Arctic sea ice decline. Acta Oceanol. Sin., 35, 4953, https://doi.org/10.1007/s13131-016-0854-5.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Svendsen, L., N. Keenlyside, M. Muilwijk, I. Bethke, N.-E. Omrani, and Y. Gao, 2021: Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth century. Climate Dyn., 57, 32233243, https://doi.org/10.1007/s00382-021-05868-9.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Search Google Scholar
    • Export Citation
  • Topál, D., and Q. Ding, 2023: Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. Nat. Climate Change, 13, 710718, https://doi.org/10.1038/s41558-023-01698-1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, https://doi.org/10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., P. Tisler, and P. Uotila, 2012: Atmospheric forcing on the drift of Arctic sea ice in 1989–2009. Geophys. Res. Lett., 39, L02501, https://doi.org/10.1029/2011GL050118.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., F. Fetterer, J. Scott Stewart, and W. L. Chapman, 2017: A database for depicting Arctic sea ice variations back to 1850. Geogr. Rev., 107, 89107, https://doi.org/10.1111/j.1931-0846.2016.12195.x.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, https://doi.org/10.1029/2009GL037820.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    • Search Google Scholar
    • Export Citation
  • Wang, T., and J.-P. Miao, 2017: Twentieth-century Pacific decadal oscillation simulated by CMIP5 coupled models. Atmos. Ocean. Sci. Lett., 11, 94101, https://doi.org/10.1080/16742834.2017.1381548.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Y. Li, B. Liu, and J. Liu, 2015: Global climate internal variability in a 2000-year control simulation with Community Earth System Model (CESM). Chin. Geogr. Sci., 25, 263273, https://doi.org/10.1007/s11769-015-0754-1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and L. Papritz, 2018: Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci., 11, 108113, https://doi.org/10.1038/s41561-017-0041-0.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., Y. Dong, C. Proistosecu, K. C. Armour, and D. S. Battisti, 2022: Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett., 49, e2022GL100011, https://doi.org/10.1029/2022GL100011.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., T. Weingartner, and R. Lindsay, 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602, https://doi.org/10.1029/2009GL041621.

    • Search Google Scholar
    • Export Citation
  • Yang, D., J. M. Arblaster, G. A. Meehl, M. H. England, E.-P. Lim, S. Bates, and N. Rosenbloom, 2020: Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet. J. Climate, 33, 54455463, https://doi.org/10.1175/JCLI-D-19-0604.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., G. Wang, and N. Keenlyside, 2020: The Arctic sea ice extent change connected to Pacific decadal variability. Cryosphere, 14, 693708, https://doi.org/10.5194/tc-14-693-2020.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. A. Winkler, M. Zhou, D. H. Lenschow, B. Li, X. Wang, and Q. Yang, 2017: Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep., 7, 45804, https://doi.org/10.1038/srep45804.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., G. Chen, M. Ting, L. R. Leung, B. Guan, and L. Li, 2023: More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice. Nat. Climate Change, 13, 266273, https://doi.org/10.1038/s41558-023-01599-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, https://doi.org/10.1073/pnas.1422296112.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 290 290 197
Full Text Views 61 61 42
PDF Downloads 70 70 54