Abstract
Atmospheric heat transport (AHT) is an important piece of our climate system but has primarily been studied at monthly or longer time scales. We introduce a new method for calculating zonal-mean meridional AHT using instantaneous atmospheric fields. When time averaged, our calculations closely reproduce the climatological AHT used elsewhere in the literature to understand AHT and its trends on long time scales. In the extratropics, AHT convergence and atmospheric heating are strongly temporally correlated suggesting that AHT drives the vast majority of zonal-mean atmospheric temperature variability. Our AHT methodology separates AHT into two components (eddies and the mean meridional circulation) which we find are negatively correlated throughout most of the mid- to high latitudes. This negative correlation reduces the variance in the total AHT compared to eddy AHT. Last, we find that the temporal distribution of the total AHT at any given latitude is approximately symmetric.
© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).