A New Method for Calculating Instantaneous Atmospheric Heat Transport

Tyler Cox aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington
eInigo Insurance, London, United Kingdom

Search for other papers by Tyler Cox in
Current site
Google Scholar
PubMed
Close
,
Aaron Donohoe bPolar Science Center, Applied Physics Lab, University of Washington, Seattle, Washington

Search for other papers by Aaron Donohoe in
Current site
Google Scholar
PubMed
Close
,
Kyle C. Armour cSchool of Oceanography, University of Washington, Seattle, Washington
aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kyle C. Armour in
Current site
Google Scholar
PubMed
Close
,
Gerard H. Roe dDepartment of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Gerard H. Roe in
Current site
Google Scholar
PubMed
Close
, and
Dargan M. W. Frierson aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric heat transport (AHT) is an important piece of our climate system but has primarily been studied at monthly or longer time scales. We introduce a new method for calculating zonal-mean meridional AHT using instantaneous atmospheric fields. When time averaged, our calculations closely reproduce the climatological AHT used elsewhere in the literature to understand AHT and its trends on long time scales. In the extratropics, AHT convergence and atmospheric heating are strongly temporally correlated suggesting that AHT drives the vast majority of zonal-mean atmospheric temperature variability. Our AHT methodology separates AHT into two components (eddies and the mean meridional circulation) which we find are negatively correlated throughout most of the mid- to high latitudes. This negative correlation reduces the variance in the total AHT compared to eddy AHT. Last, we find that the temporal distribution of the total AHT at any given latitude is approximately symmetric.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tyler Cox, tyler.tsc@gmail.com

Abstract

Atmospheric heat transport (AHT) is an important piece of our climate system but has primarily been studied at monthly or longer time scales. We introduce a new method for calculating zonal-mean meridional AHT using instantaneous atmospheric fields. When time averaged, our calculations closely reproduce the climatological AHT used elsewhere in the literature to understand AHT and its trends on long time scales. In the extratropics, AHT convergence and atmospheric heating are strongly temporally correlated suggesting that AHT drives the vast majority of zonal-mean atmospheric temperature variability. Our AHT methodology separates AHT into two components (eddies and the mean meridional circulation) which we find are negatively correlated throughout most of the mid- to high latitudes. This negative correlation reduces the variance in the total AHT compared to eddy AHT. Last, we find that the temporal distribution of the total AHT at any given latitude is approximately symmetric.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tyler Cox, tyler.tsc@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 0.5360 MB)
Save
  • Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, https://doi.org/10.1175/JCLI-D-15-0512.1.

    • Search Google Scholar
    • Export Citation
  • Bangalath, H. K., and O. M. Pauluis, 2020: A new mass flux correction procedure for vertically integrated energy transport by constraining mass, energy, and water budgets. Geophys. Res. Lett., 47, e2020GL089764, https://doi.org/10.1029/2020GL089764.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., T. Cox, Z. I. Espinosa, and A. Donohoe, 2023: The largest ever recorded heatwave—Characteristics and attribution of the Antarctic heatwave of March 2022. Geophys. Res. Lett., 50, e2023GL104910, https://doi.org/10.1029/2023GL104910.

    • Search Google Scholar
    • Export Citation
  • Cardinale, C. J., and B. E. Rose, 2022: The Arctic surface heating efficiency of tropospheric energy flux events. J. Climate, 35, 58975913, https://doi.org/10.1175/JCLI-D-21-0852.1.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci., 12, 528532, https://doi.org/10.1038/s41561-019-0383-x.

    • Search Google Scholar
    • Export Citation
  • Cox, T., A. Donohoe, G. H. Roe, K. C. Armour, and D. M. W. Frierson, 2022: Near invariance of poleward atmospheric heat transport in response to midlatitude orography. J. Climate, 35, 40994113, https://doi.org/10.1175/JCLI-D-21-0888.1.

    • Search Google Scholar
    • Export Citation
  • Cox, T., A. Donohoe, K. C. Armour, D. M. W. Frierson, and G. H. Roe, 2023: Comment on “moist static energy transport trends in four global reanalyses: Are they downgradient?” by Clark et al. Geophys. Res. Lett., 50, e2023GL102804, https://doi.org/10.1029/2023GL102804.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. G., G. Lesins, C. P. Thackray, C. Perro, G. J. Nott, T. J. Duck, R. Damoah, and J. R. Drummond, 2011: Water vapor intrusions into the high Arctic during winter. Geophys. Res. Lett., 38, L12806, https://doi.org/10.1029/2011GL047493.

    • Search Google Scholar
    • Export Citation
  • Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, https://doi.org/10.3390/atmos12111462.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), ECMWF, accessed 3 June 2020, https://doi.org/10.24381/cds.adbb2d47.

  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., and P. J. Kushner, 2014: Midlatitude moisture contribution to recent Arctic tropospheric summertime variability. J. Climate, 27, 56935707, https://doi.org/10.1175/JCLI-D-13-00721.1.

    • Search Google Scholar
    • Export Citation
  • Lembo, V., G. Messori, R. Graversen, and V. Lucarini, 2019: Spectral decomposition and extremes of atmospheric meridional energy transport in the Northern Hemisphere midlatitudes. Geophys. Res. Lett., 46, 76027613, https://doi.org/10.1029/2019GL082105.

    • Search Google Scholar
    • Export Citation
  • Lembo, V., F. Fabiano, V. M. Galfi, R. G. Graversen, V. Lucarini, and G. Messori, 2022: Meridional-energy-transport extremes and the general circulation of northern hemisphere mid-latitudes: Dominant weather regimes and preferred zonal wavenumbers. Wea. Climate Dyn., 3, 10371062, https://doi.org/10.5194/wcd-3-1037-2022.

    • Search Google Scholar
    • Export Citation
  • Liang, M., A. Czaja, R. Graversen, and R. Tailleux, 2018: Poleward energy transport: Is the standard definition physically relevant at all time scales? Climate Dyn., 50, 17851797, https://doi.org/10.1007/s00382-017-3722-x.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1953: A multiple index notation for describing atmospheric transport processes. AFCRL Rep., 35–53.

  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Messori, G., and A. Czaja, 2013: On the sporadic nature of meridional heat transport by transient eddies. Quart. J. Roy. Meteor. Soc., 139, 9991008, https://doi.org/10.1002/qj.2011.

    • Search Google Scholar
    • Export Citation
  • Messori, G., and A. Czaja, 2014: Some considerations on the spectral features of meridional heat transport by transient eddies. Quart. J. Roy. Meteor. Soc., 140, 13771386, https://doi.org/10.1002/qj.2224.

    • Search Google Scholar
    • Export Citation
  • Messori, G., and A. Czaja, 2015: On local and zonal pulses of atmospheric heat transport in reanalysis data. Quart. J. Roy. Meteor. Soc., 141, 23762389, https://doi.org/10.1002/qj.2529.

    • Search Google Scholar
    • Export Citation
  • Messori, G., C. Woods, and R. Caballero, 2018: On the drivers of wintertime temperature extremes in the high Arctic. J. Climate, 31, 15971618, https://doi.org/10.1175/JCLI-D-17-0386.1.

    • Search Google Scholar
    • Export Citation
  • Mortin, J., G. Svensson, R. G. Graversen, M.-L. Kapsch, J. C. Stroeve, and L. N. Boisvert, 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett., 43, 66366642, https://doi.org/10.1002/2016GL069330.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 652 pp.

  • Salustri, G., and P. H. Stone, 1983: A diagnostic study of the forcing of the Ferrel cell by eddies, with latent heat effects included. J. Atmos. Sci., 40, 11011109, https://doi.org/10.1175/1520-0469(1983)040<1101:ADSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., P. Barpanda, and A. Donohoe, 2018: A moist static energy framework for zonal-mean storm-track intensity. J. Atmos. Sci., 75, 19791994, https://doi.org/10.1175/JAS-D-17-0183.1.

    • Search Google Scholar
    • Export Citation
  • Siler, N., G. H. Roe, and K. C. Armour, 2018: Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance model. J. Climate, 31, 74817493, https://doi.org/10.1175/JCLI-D-18-0081.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, https://doi.org/10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., D. S. Battisti, D. W. J. Thompson, and D. L. Hartmann, 2023: The Atmospheric General Circulation. Cambridge University Press, 456 pp.

  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 563 563 170
Full Text Views 196 196 90
PDF Downloads 242 242 115