An Increase in Autumn Marine Heatwaves Caused by the Indian Ocean Dipole in the Bay of Bengal

Kunming Liang aFujian Provincial Key Laboratory of Marine Physical and Geological Processes, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
dSchool of Atmospheric Sciences, Key Laboratory of Tropical Atmosphere-Ocean System Ministry of Education, Sun Yat-sen University, Zhuhai, China
eSchool of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Kunming Liang in
Current site
Google Scholar
PubMed
Close
,
Yun Qiu aFujian Provincial Key Laboratory of Marine Physical and Geological Processes, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
bLaboratory for Regional Oceanography and Numerical Modeling, Qingdao Marine Science and Technology Center, Qingdao, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Yun Qiu in
Current site
Google Scholar
PubMed
Close
,
Xinyu Lin aFujian Provincial Key Laboratory of Marine Physical and Geological Processes, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China

Search for other papers by Xinyu Lin in
Current site
Google Scholar
PubMed
Close
,
Wenshu Lin aFujian Provincial Key Laboratory of Marine Physical and Geological Processes, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China

Search for other papers by Wenshu Lin in
Current site
Google Scholar
PubMed
Close
,
Xutao Ni aFujian Provincial Key Laboratory of Marine Physical and Geological Processes, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China

Search for other papers by Xutao Ni in
Current site
Google Scholar
PubMed
Close
, and
Yijun He eSchool of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yijun He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the interannual variability of marine heatwaves (MHWs) in the Bay of Bengal (BOB) associated with the Indian Ocean dipole (IOD) from 1982 to 2021. The results revealed a significant positive correlation at the 95% confidence level between the IOD and MHW days in the central bay at the peak of the IOD in autumn. During positive IOD (pIOD) events, the central bay experienced more MHW days in autumn, with an average increase of 7.4 days. The increased MHW days in the central bay could be primarily attributed to the enhanced net heat flux (TQ), which is 9.7 times the contribution of ocean dynamic processes (horizontal advection + entrainment). The reduced latent heat flux loss and enhanced shortwave radiation due to the anomalous atmospheric low-level high pressure associated with the pIOD account for 63% and 50%, respectively, of the anomalous enhanced TQ, while the longwave radiation and sensible heat flux make smaller contributions of −20% and 7%. In addition, thermocline deepening in the southwestern bay, caused by this anomalous high pressure and associated anticyclonic wind anomalies, favors the occurrence and persistence of MHWs by reducing the mixed-layer cooling rate. In addition to the influence of the IOD, El Niño–Southern Oscillation mainly affects MHWs from winter to the following summer, which confirms the result of a previous study.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Qiu, qiuyun@tio.org.cn

Abstract

This study investigates the interannual variability of marine heatwaves (MHWs) in the Bay of Bengal (BOB) associated with the Indian Ocean dipole (IOD) from 1982 to 2021. The results revealed a significant positive correlation at the 95% confidence level between the IOD and MHW days in the central bay at the peak of the IOD in autumn. During positive IOD (pIOD) events, the central bay experienced more MHW days in autumn, with an average increase of 7.4 days. The increased MHW days in the central bay could be primarily attributed to the enhanced net heat flux (TQ), which is 9.7 times the contribution of ocean dynamic processes (horizontal advection + entrainment). The reduced latent heat flux loss and enhanced shortwave radiation due to the anomalous atmospheric low-level high pressure associated with the pIOD account for 63% and 50%, respectively, of the anomalous enhanced TQ, while the longwave radiation and sensible heat flux make smaller contributions of −20% and 7%. In addition, thermocline deepening in the southwestern bay, caused by this anomalous high pressure and associated anticyclonic wind anomalies, favors the occurrence and persistence of MHWs by reducing the mixed-layer cooling rate. In addition to the influence of the IOD, El Niño–Southern Oscillation mainly affects MHWs from winter to the following summer, which confirms the result of a previous study.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Qiu, qiuyun@tio.org.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.2734 MB)
Save
  • Allan, R., and Coauthors, 2001: Is there an Indian Ocean dipole and is it independent of the El Niño-Southern Oscillation. CLIVAR Exchanges, No. 21, International CLIVAR Project Office, Southampton, United Kingdom, 18–22.

  • Beal, L. M., J. Vialard, and M. K. Roxy, 2019: IndOOS-2: A roadmap to sustained observations of the Indian Ocean for 2020-2030. CLIVAR-4/2019, GOSS-237, 11 pp., https://doi.org/10.36071/clivar.rp.4-1.2019.

  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254258, https://doi.org/10.1038/nature13327.

    • Search Google Scholar
    • Export Citation
  • Cavole, L., and Coauthors, 2016: Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanography, 29 (2), 273285, https://doi.org/10.5670/oceanog.2016.32.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2021: Upper ocean temperatures hit record high in 2020. Adv. Atmos. Sci., 38, 523530, https://doi.org/10.1007/s00376-021-0447-x.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, K. M. A., W. Jiang, G. Liu, M. K. Ahmed, and S. Akhter, 2022: Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean. Acta Oceanol. Sin., 41, 2339, https://doi.org/10.1007/s13131-021-1873-4.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, R. R., S. P. Kumar, and A. Chakraborty, 2021: Simultaneous occurrence of tropical cyclones in the northern Indian Ocean: Differential response and triggering mechanisms. Front. Mar. Sci., 8, 729269, https://doi.org/10.3389/fmars.2021.729269.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2019: Extremes abrupt changes and managing risks. Oceans and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 589–655.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, L. Zhang, T. Tozuka, B. Ng, and W. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.

    • Search Google Scholar
    • Export Citation
  • Endo, S., and T. Tozuka, 2016: The two flavors of the Indian Ocean dipole. Climate Dyn., 46, 33713385, https://doi.org/10.1007/s00382-015-2773-0.

    • Search Google Scholar
    • Export Citation
  • Gao, X., G. Li, J. Liu, and S.-M. Long, 2022: The trend and interannual variability of marine heatwaves over the Bay of Bengal. Atmosphere, 13, 469, https://doi.org/10.3390/atmos13030469.

    • Search Google Scholar
    • Export Citation
  • Gupta, H., S. Sil, A. Gangopadhyay, and G. Gawarkiewicz, 2024: Observed surface and subsurface marine heatwaves in the Bay of Bengal from in-situ and high-resolution satellite data. Climate Dyn., 62, 203221, https://doi.org/10.1007/s00382-023-06913-5.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, 65 pp., https://doi.org/10.21957/tkic6g3wm.

  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.

    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., A. Sen Gupta, E. C. J. Oliver, A. J. Hobday, J. A. Benthuysen, H. A. Scannell, D. A. Smale, and T. Wernberg, 2020: Keeping pace with marine heatwaves. Nat. Rev. Earth Environ., 1, 482493, https://doi.org/10.1038/s43017-020-0068-4.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., and Coauthors, 2017: Global warming and recurrent mass bleaching of corals. Nature, 543, 373377, https://doi.org/10.1038/nature21707.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., M. A. Alexander, S. J. Bograd, and J. D. Scott, 2020: Thermal displacement by marine heatwaves. Nature, 584, 8286, https://doi.org/10.1038/s41586-020-2534-z.

    • Search Google Scholar
    • Export Citation
  • Jean-Michel, L., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Liu, J. Mao, J. Li, S. Zhao, and Y. Yu, 2022: Three types of positive Indian Ocean Dipoles and their relationships with the South Asian summer monsoon. J. Climate, 35, 405424, https://doi.org/10.1175/JCLI-D-21-0089.1.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., and Coauthors, 2011: Elevated Sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr. Sci., 100, 111117.

    • Search Google Scholar
    • Export Citation
  • Kumar, P. K. D., Y. S. Paul, K. R. Muraleedharan, V. S. N. Murty, and P. N. Preenu, 2016: Comparison of long-term variability of sea surface temperature in the Arabian Sea and Bay of Bengal. Reg. Stud. Mar. Sci., 3, 67––75, https://doi.org/10.1016/j.rsma.2015.05.004.

    • Search Google Scholar
    • Export Citation
  • Laufkötter, C., J. Zscheischler, and T. L. Frolicher, 2020: High-impact marine heatwaves attributable to human-induced global warming. Science, 369, 16211625, https://doi.org/10.1126/science.aba0690.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Qiu, J. Hu, C. Aung, X. Lin, C. Jing, and J. Zhang, 2021: The strong upwelling event off the Southern coast of Sri Lanka in 2013 and its relationship with Indian Ocean dipole events. J. Climate, 34, 35553569, https://doi.org/10.1175/JCLI-D-20-0620.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., Y. Qiu, J. Wang, H. Teng, X. Ni, and K. Liang, 2023: Seasonal diversity of El Niño‐induced marine heatwave increases in the Bay of Bengal. Geophys. Res. Lett., 50, e2022GL100807, https://doi.org/10.1029/2022GL100807.

    • Search Google Scholar
    • Export Citation
  • Mills, K. E., and Coauthors, 2013: Fisheries management in a changing climate: Lessons from the 2012 ocean heatwave in the northwest Atlantic. Oceanography, 26, 191195, https://doi.org/10.5670/oceanog.2013.27.

    • Search Google Scholar
    • Export Citation
  • Mohanty, P. C., A. Kushabaha, R. S. Mahendra, R. K. Nayak, B. K. Sahu, E. P. Rao, and T. S. Kumar, 2021: Persistence of marine heat waves for coral bleaching and their spectral characteristics around Andaman coral reef. Environ. Monit. Assess., 193, 491, https://doi.org/10.1007/s10661-021-09264-y.

    • Search Google Scholar
    • Export Citation
  • Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res., 93, 10 74910 768, https://doi.org/10.1029/JC093iC09p10749.

    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, S., C. Gnanaseelan, J. S. Chowdary, A. Parekh, and S. Mohapatra, 2022: Prolonged La Niña events and the associated heat distribution in the tropical Indian Ocean. Climate Dyn., 58, 23512369, https://doi.org/10.1007/s00382-021-06005-2.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., and Coauthors, 2018a: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., V. Lago, A. J. Hobday, N. J. Holbrook, S. D. Ling, and C. N. Mundy, 2018b: Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr., 161, 116130, https://doi.org/10.1016/j.pocean.2018.02.007.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W. Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. Annu. Rev. Mar. Sci., 13, 313342, https://doi.org/10.1146/annurev-marine-032720-095144.

    • Search Google Scholar
    • Export Citation
  • Pathirana, G., D. Wang, G. Chen, M. K. Abeyratne, and T. Priyadarshana, 2022: Effect of seasonal barrier layer on mixed-layer heat budget in the Bay of Bengal. Acta Oceanol. Sin., 41, 3849, https://doi.org/10.1007/s13131-021-1966-0.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., A. D. King, E. A. Cougnon, N. J. Holbrook, M. R. Grose, E. C. J. Oliver, S. C. Lewis, and F. Pourasghar, 2019: The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Amer. Meteor. Soc., 100, S105S110, https://doi.org/10.1175/BAMS-D-18-0116.1.

    • Search Google Scholar
    • Export Citation
  • Pershing, A. J., and Coauthors, 2015: Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350, 809812, https://doi.org/10.1126/science.aac9819.

    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Search Google Scholar
    • Export Citation
  • Qi, R., Y. Zhang, Y. Du, and M. Feng, 2022: Characteristics and drivers of marine heatwaves in the western equatorial Indian Ocean. J. Geophys. Res. Oceans, 127, e2022JC018732, https://doi.org/10.1029/2022JC018732.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., R. Goyal, B. Jangir, C. C. Ummenhofer, M. Feng, and M. Mishra, 2022: Interactions between a marine heatwave and tropical cyclone Amphan in the Bay of Bengal in 2020. Front. Climate, 4, 861477, https://doi.org/10.3389/fclim.2022.861477.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., K. S. Casey, D. B. Chelton, C. Liu, T. M. Smith, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Sandaruwan, J. W. D., W. Zhou, P. K. Y. Cheung, Y. Du, and X. Wang, 2023: Characteristics and formation of two leading marine heatwave modes in the North Indian Ocean during summer and their implications for local precipitation. J. Climate, 36, 33853402, https://doi.org/10.1175/JCLI-D-22-0574.1.

    • Search Google Scholar
    • Export Citation
  • Saranya, J. S., M. K. Roxy, P. Dasgupta, and A. Anand, 2022: Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Oceans, 127, e2021JC017427, https://doi.org/10.1029/2021JC017427.

    • Search Google Scholar
    • Export Citation
  • Scannell, H. A., A. J. Pershing, M. A. Alexander, A. C. Thomas, and K. E. Mills, 2016: Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett., 43, 20692076, https://doi.org/10.1002/2015GL067308.

    • Search Google Scholar
    • Export Citation
  • Shi, J., C. Tang, Q. Liu, Y. Zhang, H. Yang, and C. Li, 2022: Role of mixed layer depth in the location and development of the Northeast Pacific warm Blobs. Geophys. Res. Lett., 49, e2022GL098849, https://doi.org/10.1029/2022GL098849.

    • Search Google Scholar
    • Export Citation
  • Smale, D. A., and Coauthors, 2019: Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Climate Change, 9, 306312, https://doi.org/10.1038/s41558-019-0412-1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. E., M. T. Burrows, A. J. Hobday, A. Sen Gupta, P. J. Moore, M. Thomsen, T. Wernberg, and D. A. Smale, 2021: Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 374, eabj3593, https://doi.org/10.1126/science.abj3593.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., R. D. D’Arrigo, K. J. Anchukaitis, B. M. Buckley, and E. R. Cook, 2013: Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas. Climate Dyn., 40, 13191334, https://doi.org/10.1007/s00382-012-1458-1.

    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Xu, G. Fang, S. Jiang, G. Wang, Z. Wei, and Y. Wang, 2022: Characteristics of marine heatwaves in the Japan/East Sea. Remote Sens., 14, 936, https://doi.org/10.3390/rs14040936.

    • Search Google Scholar
    • Export Citation
  • Werner, A., A. M. Maharaj, and N. J. Holbrook, 2011: A new method for extracting the ENSO-independent Indian Ocean dipole: Application to Australian region tropical cyclone counts. Climate Dyn., 38, 25032511, https://doi.org/10.1007/s00382-011-1133-y.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., Y. Wu, H. Wang, Z. Zhang, J. Li, and J. Zhang, 2021: Seasonal and interannual variabilities of chlorophyll across the eastern equatorial Indian Ocean and Bay of Bengal. Prog. Oceanogr., 198, 102661, https://doi.org/10.1016/j.pocean.2021.102661.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., and C. Wang, 2021: Variations in summer marine heatwaves in the South China Sea. J. Geophys. Res. Oceans, 126, e2021JC017792, https://doi.org/10.1029/2021JC017792.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and J. Cao, 2012: North Indian Ocean tropical cyclone activities influenced by the Indian Ocean dipole mode. Sci. China Earth Sci., 56, 855865, https://doi.org/10.1007/s11430-012-4559-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Du, and W. Cai, 2018: A spurious positive Indian Ocean dipole in 2017. Sci. Bull., 63, 11701172, https://doi.org/10.1016/j.scib.2018.08.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Du, T. Tozuka, and S. Kido, 2021: Revisiting ENSO impacts on the Indian Ocean SST based on a combined linear regression method. Acta Oceanol. Sin., 40, 4757, https://doi.org/10.1007/s13131-021-1733-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., A. Duan, and X. Wang, 2023: Joint effect of the Indian Ocean dipole and the Silk Road Pattern on Indian rainfall during summer to autumn transition. Atmos. Res., 283, 106589, https://doi.org/10.1016/j.atmosres.2022.106589.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, S. Zheng, Y. Yang, and X. Cheng, 2013: Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 118, 49114923, https://doi.org/10.1002/jgrc.20392.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, M. Feng, and S. Hu, 2021: Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015–2016 and 2019–2020. Geophys. Res. Lett., 48, e2021GL095350, https://doi.org/10.1029/2021GL095350.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and J. Li, 2010: Winter-to-winter recurrence of sea surface temperature anomalies in the Northern Hemisphere. J. Climate, 23, 38353854, https://doi.org/10.1175/2009JCLI2583.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 640 640 239
Full Text Views 119 119 32
PDF Downloads 158 158 44