Interannual Variability of the East African Coastal Current Associated with El Niño–Southern Oscillation

Chenyu Zheng aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China

Search for other papers by Chenyu Zheng in
Current site
Google Scholar
PubMed
Close
,
Shaojun Zheng aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China
bKey Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
cKey Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing, China

Search for other papers by Shaojun Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9430-4210
,
Ming Feng dCSIRO Environment, Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia

Search for other papers by Ming Feng in
Current site
Google Scholar
PubMed
Close
,
Lingling Xie aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China
bKey Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
cKey Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing, China

Search for other papers by Lingling Xie in
Current site
Google Scholar
PubMed
Close
,
Lei Wang aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China
bKey Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
cKey Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing, China

Search for other papers by Lei Wang in
Current site
Google Scholar
PubMed
Close
,
Tianyu Zhang aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China
bKey Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
cKey Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing, China

Search for other papers by Tianyu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Li Yan aLaboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China
bKey Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong, China
cKey Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing, China

Search for other papers by Li Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The East African Coastal Current (EACC) is an important western boundary current of the tropical south Indian Ocean and plays an important role in the ocean circulation and biogeochemical cycles in the Indian Ocean. This study investigates the interannual variability of the EACC and its dynamical mechanisms. The result shows that the EACC has interannual variability associated with El Niño–Southern Oscillation (ENSO) during 1993–2017. The EACC shows a significantly positive correlation with the Niño-3.4 index with a correlation coefficient of 0.65, lagging the Niño-3.4 index by 18 months. During the decaying phases of El Niño (La Niña) events, the negative (positive) sea level anomaly (SLA) propagates westward as upwelling (downwelling) Rossby waves from the southeast Indian Ocean to the southwest Indian Ocean and then strengthens (weakens) the EACC due to zonal SLA gradient off the East African coast under geostrophic equilibrium. The SLA gradually weakens in the southeast Indian Ocean during its westward propagation but strengthens in the southwest Indian Ocean promoted by local wind stress curl anomaly. This study can improve our understanding of the relationship between the western boundary current of the tropical south Indian Ocean and large-scale ENSO air–sea processes and is important for managing marine fisheries and ecosystems on the East African coast.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shaojun Zheng, zhengsj@gdou.edu.cn

Abstract

The East African Coastal Current (EACC) is an important western boundary current of the tropical south Indian Ocean and plays an important role in the ocean circulation and biogeochemical cycles in the Indian Ocean. This study investigates the interannual variability of the EACC and its dynamical mechanisms. The result shows that the EACC has interannual variability associated with El Niño–Southern Oscillation (ENSO) during 1993–2017. The EACC shows a significantly positive correlation with the Niño-3.4 index with a correlation coefficient of 0.65, lagging the Niño-3.4 index by 18 months. During the decaying phases of El Niño (La Niña) events, the negative (positive) sea level anomaly (SLA) propagates westward as upwelling (downwelling) Rossby waves from the southeast Indian Ocean to the southwest Indian Ocean and then strengthens (weakens) the EACC due to zonal SLA gradient off the East African coast under geostrophic equilibrium. The SLA gradually weakens in the southeast Indian Ocean during its westward propagation but strengthens in the southwest Indian Ocean promoted by local wind stress curl anomaly. This study can improve our understanding of the relationship between the western boundary current of the tropical south Indian Ocean and large-scale ENSO air–sea processes and is important for managing marine fisheries and ecosystems on the East African coast.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shaojun Zheng, zhengsj@gdou.edu.cn
Save
  • Akhter, S., F. Qiao, K. Wu, X. Yin, K. M. A. Chowdhury, and N. U. M. K. Chowdhury, 2021: Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: A statistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dyn. Atmos. Oceans, 95, 101239, https://doi.org/10.1016/j.dynatmoce.2021.101239.

    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://doi.org/10.7289/V5C8276M.

  • Arbic, B. K., R. B. Scott, D. B. Chelton, J. G. Richman, and J. F. Shriver, 2012: Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data. J. Geophys. Res., 117, C03029, https://doi.org/10.1029/2011JC007367.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Nino Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bell, B. E., 1969: Marine Fisheries. East Africa: Its Peoples and Resources, W. T. W. Morgan, Ed., Oxford University Press, 243–254.

  • Birol, F., and R. Morrow, 2001: Source of the baroclinic waves in the southeast Indian Ocean. J. Geophys. Res., 106, 91459160, https://doi.org/10.1029/2000JC900044.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and S. Levitus, 1997: Objective Analyses of Temperature and Salinity for the World Ocean on a 1/4° Grid. NOAA Atlas NESDIS 11, 63 pp., https://repository.library.noaa.gov/view/noaa/1069/noaa_1069_DS1.pdf.

  • Bunting, P., and Coauthors, 2018: The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens., 10, 1669, https://doi.org/10.3390/rs10101669.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems – The role of ocean dynamics. J. Climate, 19, 51225174, https://doi.org/10.1175/JCLI3903.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Search Google Scholar
    • Export Citation
  • Donguy, J. R., and G. Meyers, 1995: Observations of geostrophic transport variability in the western tropical Indian Ocean. Deep-Sea Res. I, 42, 10071028, https://doi.org/10.1016/0967-0637(95)00047-A.

    • Search Google Scholar
    • Export Citation
  • Driver, P., B. Abiodun, and C. J. C. Reason, 2019: Modelling the precipitation response over southern Africa to the 2009–2010 El Nino using a stretched grid global atmospheric model. Climate Dyn., 52, 39293949, https://doi.org/10.1007/s00382-018-4362-5.

    • Search Google Scholar
    • Export Citation
  • Düing, W., and F. Schott, 1978: Measurements in the source region of the Somali Current during the monsoon reversal. J. Phys. Oceanogr., 8, 278289, https://doi.org/10.1175/1520-0485(1978)008<0278:MITSRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, A. Pearce, and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, https://doi.org/10.1029/2002JC001763.

    • Search Google Scholar
    • Export Citation
  • Green, E. P., and F. T. Short, 2003: World Atlas of Seagrasses. University of California Press, 332 pp.

  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hood, R. R., L. E. Beckley, and J. D. Wiggert, 2017: Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Prog. Oceanogr., 156, 290325, https://doi.org/10.1016/j.pocean.2017.04.011.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2016: Interannual variability of the Indonesian throughflow: The salinity effect. J. Geophys. Res. Oceans, 121, 25962615, https://doi.org/10.1002/2015JC011495.

    • Search Google Scholar
    • Export Citation
  • Jacobs, Z. L., and Coauthors, 2020a: Shelf-break upwelling and productivity over the North Kenya Banks: The importance of large-scale ocean dynamics. J. Geophys. Res. Oceans, 125, e2019JC015519, https://doi.org/10.1029/2019JC015519.

    • Search Google Scholar
    • Export Citation
  • Jacobs, Z. L., and Coauthors, 2020b: A major ecosystem shift in coastal East African waters during the 1997/98 super El Niño as detected using remote sensing data. Remote Sens., 12, 3127, https://doi.org/10.3390/rs12193127.

    • Search Google Scholar
    • Export Citation
  • Jacobs, Z. L., and Coauthors, 2021: Key climate change stressors of marine ecosystems along the path of the East African Coastal Current. Ocean Coastal Manage., 208, 105627, https://doi.org/10.1016/j.ocecoaman.2021.105627.

    • Search Google Scholar
    • Export Citation
  • Jebri, F., and Coauthors, 2020: Interannual monsoon wind variability as a key driver of East African small pelagic fisheries. Sci. Rep., 10, 13247, https://doi.org/10.1038/s41598-020-70275-9.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., M. M. Nguli, and E. J. Kimani, 1982: Response to annually reversing monsoon winds at the southern boundary of the Somali Current. Deep-Sea Res., 29A, 12171227, https://doi.org/10.1016/0198-0149(82)90091-7.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2018: South Indian Ocean Rossby waves. Atmos.–Ocean, 56, 322331, https://doi.org/10.1080/07055900.2018.1544882.

  • Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 51, 21232136, https://doi.org/10.1016/j.dsr.2004.06.005.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., G. T. Mitchum, R. B. Lukas, and P. P. Niiler, 1999: Tropical Pacific near‐surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104, 23 31323 326, https://doi.org/10.1029/1999JC900197.

    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., and V. Truesdale, 1972: Changes in the currents in 1970 off the East African Coast with the onset of the southeast monsoon. J. Geophys. Res., 77, 32813283, https://doi.org/10.1029/JC077i018p03281.

    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., D. R. Quadfasel, and D. Wilson, 1982: Development of the flow field during the onset of the Somali Current, 1979. J. Phys. Oceanogr., 12, 13251342, https://doi.org/10.1175/1520-0485(1982)012<1325:DOTFFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leupold, M., M. Pfeiffer, T. K. Watanabe, L. Reuning, D. Garbe-Schöenberg, C.-C. Shen, and G.-J. A. Brummer, 2021: El Nino-Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675. Climate Past, 17, 151170, https://doi.org/10.5194/cp-17-151-2021.

    • Search Google Scholar
    • Export Citation
  • Liu, Q.-Y., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Search Google Scholar
    • Export Citation
  • Mahongo, S. B., and Y. W. Shaghude, 2014: Modelling the dynamics of the Tanzanian coastal waters. J. Oceanogr. Mar. Sci., 5 (1), 17, https://doi.org/10.5897/JOMS2013.0100.

    • Search Google Scholar
    • Export Citation
  • Manyilizu, M., F. Dufois, P. Penven, and C. Reason, 2014: Interannual variability of sea surface temperature and circulation in the tropical western Indian Ocean. Afr. J. Mar. Sci., 36, 233252, https://doi.org/10.2989/1814232X.2014.928651.

    • Search Google Scholar
    • Export Citation
  • Manyilizu, M., P. Penven, and C. J. C. Reason, 2016: Annual cycle of the upper-ocean circulation and properties in the tropical western Indian Ocean. Afr. J. Mar. Sci., 38, 8199, https://doi.org/10.2989/1814232X.2016.1158123.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., D. Dommenget, and S. Neske, 2022: Distinct off-equatorial zonal wind stress and oceanic responses for EP- and CP-type ENSO events. J. Climate, 35, 14231440, https://doi.org/10.1175/JCLI-D-21-0473.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and M. E. Maltrud, 2011: Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett., 38, L21605, https://doi.org/10.1029/2011GL049576.

    • Search Google Scholar
    • Export Citation
  • Naseef, T. M., and V. S. Kumar, 2020: Climatology and trends of the Indian Ocean surface waves based on 39-year long ERA5 reanalysis data. Int. J. Climatol., 40, 9791006, https://doi.org/10.1002/joc.6251.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Newell, B. S., 1957: A preliminary survey of the hydrography of the British East African Coastal waters. Her Majesty’s Stationery Office Rep., 21 pp., http://hdl.handle.net/1834/7218.

  • Newell, B. S., 1959: Hydrography of the British East African Coastal waters, Part II. Her Majesty’s Stationery Office Rep., 18 pp., http://hdl.handle.net/1834/7217.

  • Nyandwi, N., 2013: The effects of monsoons on the East African Coastal Current through the Zanzibar Channel, Tanzania. J. Ocean Technol., 8, 6574.

    • Search Google Scholar
    • Export Citation
  • Obura, D., 2012: The diversity and biogeography of western Indian Ocean reef-building corals. PLOS ONE, 7, e45013, https://doi.org/10.1371/journal.pone.0045013.

    • Search Google Scholar
    • Export Citation
  • Painter, S. C., 2020: The biogeochemistry and oceanography of the East African Coastal Current. Prog. Oceanogr., 186, 102374, https://doi.org/10.1016/j.pocean.2020.102374.

    • Search Google Scholar
    • Export Citation
  • Périgaud, C., and P. Delecluse, 1992: Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow-water simulations. J. Geophys. Res., 97, 20 16920 178, https://doi.org/10.1029/92JC01961.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1983: Meteorology: Anomalous El Niño of 1982–83. Nature, 305, 16, https://doi.org/10.1038/305016a0.

  • Potemra, J. T., and N. Schneider, 2007: Interannual variations of the Indonesian throughflow. J. Geophys. Res., 112, C05035, https://doi.org/10.1029/2006JC003808.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II, 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, J. A. Lindesay, and T. J. Ansell, 2000: ENSO and climatic signals across the Indian Ocean basin in the global context: Part I, interannual composite patterns. Int. J. Climatol., 20, 12851327, https://doi.org/10.1002/1097-0088(200009)20:11<1285::AID-JOC536>3.0.CO;2-R.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Nino indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185, https://doi.org/10.1007/978-0-387-49791-4_10.

  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Semba, M., R. Lumpkin, I. Kimirei, Y. Shaghude, and N. Nyandwi, 2019: Seasonal and spatial variation of surface current in the Pemba Channel, Tanzania. PLOS ONE, 14, e0210303, https://doi.org/10.1371/journal.pone.0210303.

    • Search Google Scholar
    • Export Citation
  • Sueyoshi, M., and T. Yasuda, 2012: Inter-model variability of projected sea level changes in the western North Pacific in CMIP3 coupled climate models. J. Oceanogr., 68, 533543, https://doi.org/10.1007/s10872-012-0117-9.

    • Search Google Scholar
    • Export Citation
  • Swallow, J. C., F. Schott, and M. Fieux, 1991: Structure and transport of the East African Coastal Current. J. Geophys. Res., 96, 22 24522 257, https://doi.org/10.1029/91JC01942.

    • Search Google Scholar
    • Export Citation
  • Tan, S. W., and H. Zhou, 2018: The observed impacts of the two types of El Nino on the North Equatorial Countercurrent in the Pacific Ocean. Geophys. Res. Lett., 45, 10 49310 500, https://doi.org/10.1029/2018GL079273.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. McGregor, and F.-F. Jin, 2010: Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Climate, 23, 44294437, https://doi.org/10.1175/2010JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, https://doi.org/10.1029/2009JC005547.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20, 17421760, https://doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., J. Li, Q. Liu, A. Huete, L. Li, Y. Dong, and J. Zhao, 2022: Eastern-Pacific and central-Pacific types of ENSO elicit diverse responses of vegetation in the West Pacific region. Geophys. Res. Lett., 49, e2021GL096666, https://doi.org/10.1029/2021GL096666.

    • Search Google Scholar
    • Export Citation
  • Wu, X., G. Li, W. Jiang, S.-M. Long, and B. Lu, 2021: Asymmetric relationship between ENSO and the tropical Indian Ocean summer SST anomalies. J. Climate, 34, 59555969, https://doi.org/10.1175/JCLI-D-20-0546.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Coauthors, 2018: Different impacts from various El Niño events on Wyrtki jets in boreal autumn season. Pure Appl. Geophys., 175, 45674577, https://doi.org/10.1007/s00024-018-1928-4.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–211, https://doi.org/10.1029/147GM12.

  • Yang, G., L. Liu, X. Zhao, Y. Li, Y. Duan, B. Liu, K. Huang, and W. Yu, 2019: Impacts of different types of ENSO events on thermocline variability in the southern tropical Indian Ocean. Geophys. Res. Lett., 46, 67756785, https://doi.org/10.1029/2019GL082818.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., and J. Theiss, 2022: Seasonal instability of the western equatorial Indian Ocean. J. Geophys. Res. Oceans, 127, e2021JC017875, https://doi.org/10.1029/2021JC017875.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., M. J. McPhaden, and T. Lee, 2014: Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean dipole. Geophys. Res. Lett., 41, 79337941, https://doi.org/10.1002/2014GL061449.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and W. Han, 2020: Effects of climate modes on interannual variability of upwelling in the tropical Indian Ocean. J. Climate, 33, 15471573, https://doi.org/10.1175/JCLI-D-19-0386.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, S., M. Feng, Y. Du, X. Meng, and W. Yu, 2018: Interannual variability of eddy kinetic energy in the subtropical southeast Indian Ocean associated with the El Nino-Southern Oscillation. J. Geophys. Res. Oceans, 123, 10481061, https://doi.org/10.1002/2017JC013562.

    • Search Google Scholar
    • Export Citation
  • Zhuang, W., M. Feng, Y. Du, A. Schiller, and D. Wang, 2013: Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J. Geophys. Res. Oceans, 118, 13021315, https://doi.org/10.1002/jgrc.20129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 531 531 228
Full Text Views 64 64 11
PDF Downloads 88 88 15