CWRF Downscaling with Improved Land Surface Initialization Enhances Spring–Summer Seasonal Climate Prediction Skill in China

Han Zhang aSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China

Search for other papers by Han Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2623-3668
,
Xin-Zhong Liang bDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
,
Yongjiu Dai aSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China

Search for other papers by Yongjiu Dai in
Current site
Google Scholar
PubMed
Close
,
Lianchun Song dNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Lianchun Song in
Current site
Google Scholar
PubMed
Close
,
Qingquan Li dNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Qingquan Li in
Current site
Google Scholar
PubMed
Close
,
Fang Wang dNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Fang Wang in
Current site
Google Scholar
PubMed
Close
, and
Shulei Zhang aSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China

Search for other papers by Shulei Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates skill enhancement in operational seasonal forecasts of Beijing Climate Center’s Climate System Model through regional Climate–Weather Research and Forecasting (CWRF) downscaling and improved land initialization in China. The downscaling mitigates regional climate biases, enhancing precipitation pattern correlations by 0.29 in spring and 0.21 in summer. It also strengthens predictive capabilities for interannual anomalies, expanding skillful temperature forecast areas by 6% in spring and 12% in summer. Remarkably, during 7 of 10 years with relatively high predictability, the downscaling increases average seasonal precipitation anomaly correlations by 0.22 and 0.25. Additionally, the substitution of initial land conditions via a Common Land Model integration reduces snow cover and cold biases across the Tibetan Plateau and Mongolia–northeast China, consistently contributing to CWRF’s overall enhanced forecasting capabilities. Improved downscaling predictive skill is attributed to CWRF’s enhanced physics representation, accurately capturing intricate regional interactions and associated teleconnections across China, especially linked to the Tibetan Plateau’s blocking and thermal effects. In summer, CWRF predicts an intensified South Asian high alongside a strengthened East Asian jet compared to CSM, amplifying cold air advection and warm moisture transport over central to northeast regions. Consequently, rainfall distributions and interannual anomalies over these areas experience substantial improvements. Similar enhanced circulation processes elucidate skill improvement from land initialization, where the accurate specification of initial snow cover and soil temperature within sensitive regions persists in influencing local and remote circulations extending beyond two seasons. Our findings emphasize the potential of improving physics representation and surface initialization to markedly enhance regional climate predictions.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xin-Zhong Liang, xliang@umd.edu; Yongjiu Dai, daiyj6@mail.sysu.edu.cn

Abstract

This study investigates skill enhancement in operational seasonal forecasts of Beijing Climate Center’s Climate System Model through regional Climate–Weather Research and Forecasting (CWRF) downscaling and improved land initialization in China. The downscaling mitigates regional climate biases, enhancing precipitation pattern correlations by 0.29 in spring and 0.21 in summer. It also strengthens predictive capabilities for interannual anomalies, expanding skillful temperature forecast areas by 6% in spring and 12% in summer. Remarkably, during 7 of 10 years with relatively high predictability, the downscaling increases average seasonal precipitation anomaly correlations by 0.22 and 0.25. Additionally, the substitution of initial land conditions via a Common Land Model integration reduces snow cover and cold biases across the Tibetan Plateau and Mongolia–northeast China, consistently contributing to CWRF’s overall enhanced forecasting capabilities. Improved downscaling predictive skill is attributed to CWRF’s enhanced physics representation, accurately capturing intricate regional interactions and associated teleconnections across China, especially linked to the Tibetan Plateau’s blocking and thermal effects. In summer, CWRF predicts an intensified South Asian high alongside a strengthened East Asian jet compared to CSM, amplifying cold air advection and warm moisture transport over central to northeast regions. Consequently, rainfall distributions and interannual anomalies over these areas experience substantial improvements. Similar enhanced circulation processes elucidate skill improvement from land initialization, where the accurate specification of initial snow cover and soil temperature within sensitive regions persists in influencing local and remote circulations extending beyond two seasons. Our findings emphasize the potential of improving physics representation and surface initialization to markedly enhance regional climate predictions.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xin-Zhong Liang, xliang@umd.edu; Yongjiu Dai, daiyj6@mail.sysu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.7752 MB)
Save
  • Ambroise, B., K. Beven, and J. Freer, 1996: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity. Water Resour. Res., 32, 21352145, https://doi.org/10.1029/95WR03716.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., and M. J. Kirkby, 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, https://doi.org/10.1080/02626667909491834.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp., https://doi.org/10.5065/D6DF6P5X.

  • Broxton, P. D., X. Zeng, and N. Dawson, 2017: The impact of a low bias in snow water equivalent initialization on CFS seasonal forecasts. J. Climate, 30, 86578671, https://doi.org/10.1175/JCLI-D-17-0072.1.

    • Search Google Scholar
    • Export Citation
  • Chen, D., A. Dai, and A. Hall, 2021: The convective-to-total precipitation ratio and the “drizzling” bias in climate models. J. Geophys. Res. Atmos., 126, e2020JD034198, https://doi.org/10.1029/2020JD034198.

    • Search Google Scholar
    • Export Citation
  • Chen, L., X.-Z. Liang, D. DeWitt, A. N. Samel, and J. X. L. Wang, 2016: Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system. Climate Dyn., 46, 879896, https://doi.org/10.1007/s00382-015-2619-9.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., and X.-Z. Liang, 2010: Improved terrestrial hydrologic representation in mesoscale land surface models. J. Hydrometeor., 11, 797809, https://doi.org/10.1175/2010JHM1221.1.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., P. Kumar, and X.-Z. Liang, 2007: Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res., 43, W04414, https://doi.org/10.1029/2006WR005134.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., X.-Z. Liang, and P. Kumar, 2013: A conjunctive surface-subsurface flow representation for mesoscale land surface models. J. Hydrometeor., 14, 14211442, https://doi.org/10.1175/JHM-D-12-0168.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., https://ntrs.nasa.gov/citations/19990060930.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, M. M.-H. Yan, and C. Cote, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/citations/20010072848.

  • Coakley, J. A., Jr., and P. Chylek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409418, https://doi.org/10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., T. E. LaRow, and D. W. Shin, 2007: Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional spectral model. J. Geophys. Res., 112, D04106, https://doi.org/10.1029/2006JD007535.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Q. Zeng, 1997: A land surface model (IAP94) for climate studies Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433460, https://doi.org/10.1007/s00376-997-0063-4.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., F. Xue, and Q. Zeng, 1998: A land surface model (IAP94) for climate studies Part II: Implementation and preliminary results of coupled model with IAP GCM. Adv. Atmos. Sci., 15, 4762, https://doi.org/10.1007/s00376-998-0017-5.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 22812299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Sales, F., and Y. Xue, 2006: Investigation of seasonal prediction of the South American regional climate using the nested model system. J. Geophys. Res., 111, D20107, https://doi.org/10.1029/2005JD006989.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version le as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 88 pp., https://www.osti.gov/biblio/5733868.

  • Díez, E., B. Orfila, M. D. Frías, J. Fernández, A. S. Cofiño, and J. M. Gutiérrez, 2011: Downscaling ECMWF seasonal precipitation forecasts in Europe using the RCA model. Tellus, 63A, 757762, https://doi.org/10.1111/j.1600-0870.2011.00523.x.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, https://doi.org/10.1073/pnas.0506042102.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Coauthors, 2006a: Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC). Part I: Sensitivity study. Adv. Atmos. Sci., 23, 323341, https://doi.org/10.1007/s00376-006-0323-8.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Liu, X. Shi, Q. Li, Q. Li, and Y. Liu, 2006b: Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC) Part II: The experimental seasonal prediction. Adv. Atmos. Sci., 23, 487503, https://doi.org/10.1007/s00376-006-0487-2.

    • Search Google Scholar
    • Export Citation
  • Fennig, K., M. Schröder, and R. Hollmann, 2017: Fundamental climate data record of microwave imager radiances, edition 3. Accessed 5 January 2023, https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V003.

  • Gandin, L. S., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361370, https://doi.org/10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 56965723, https://doi.org/10.1029/2018JD030094.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Gu, H., Y.-P. Xu, L. Liu, J. Xie, L. Wang, S. Pan, and Y. Guo, 2023: Seasonal catchment memory of high mountain rivers in the Tibetan Plateau. Nat. Commun., 14, 3173, https://doi.org/10.1038/s41467-023-38966-9.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and G. A. Riggs, 2021: MODIS/Terra snow cover daily L3 global 0.05Deg CMG, version 61. Accessed 5 January 2023, https://doi.org/10.5067/MODIS/MOD10C1.061.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, J., M. Huang, and K. Li, 2008: Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China, 51D, 885898, https://doi.org/10.1007/s11430-008-0039-y.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., and Coauthors, 2023: Precipitation regime changes in high mountain Asia driven by cleaner air. Nature, 623, 544549, https://doi.org/10.1038/s41586-023-06619-y.

    • Search Google Scholar
    • Export Citation
  • Jiang, R., L. Sun, C. Sun, and X.-Z. Liang, 2021: CWRF downscaling and understanding of China precipitation projections. Climate Dyn., 57, 10791096, https://doi.org/10.1007/s00382-021-05759-z.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res., 110, D10S04, https://doi.org/10.1029/2004JD004706.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., M. J. Garay, D. L. Nelson, K. K. Yau, M. A. Bull, B. J. Gaitley, J. V. Martonchik, and R. C. Levy, 2007: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. J. Geophys. Res., 112, D18205, https://doi.org/10.1029/2006JD008175.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, https://doi.org/10.1175/JHM-387.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and S. Yang, 1996: Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Climate, 9, 965985, https://doi.org/10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., H. Lu, K. Yang, J. S. Wright, L. Yu, Y. Chen, X. Huang, and S. Xu, 2017: Evaluation of the Common Land Model (CoLM) from the perspective of water and energy budget simulation: Towards inclusion in CMIP6. Atmosphere, 8, 141, https://doi.org/10.3390/atmos8080141.

    • Search Google Scholar
    • Export Citation
  • Li, Q., T. Wang, F. Wang, X.-Z. Liang, C. Zhao, L. Dong, C. Zhao, and B. Xie, 2021: Dynamical downscaling simulation of the East Asian summer monsoon in a regional Climate-Weather Research and Forecasting model. Int. J. Climatol., 41, E1700E1716, https://doi.org/10.1002/joc.6800.

    • Search Google Scholar
    • Export Citation
  • Li, Z.-C., Z.-G. Wei, C. Wang, Z.-Y. Zheng, H. Wei, and H. Liu, 2012: Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environ. Earth Sci., 66, 10911097, https://doi.org/10.1007/s12665-011-1315-2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and W.-C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124, 25972623, https://doi.org/10.1002/qj.49712455204.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., A. N. Samel, and W.-C. Wang, 1995: Observed and GCM simulated decadal variability of monsoon rainfall in East China. Climate Dyn., 11, 103114, https://doi.org/10.1007/BF00211676.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., K. E. Kunkel, and A. N. Samel, 2001: Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment. J. Climate, 14, 43634378, https://doi.org/10.1175/1520-0442(2001)014<4363:DOARCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, https://doi.org/10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2005: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110, D11107, https://doi.org/10.1029/2004JD005579.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., J. Pan, J. Zhu, K. E. Kunkel, J. X. L. Wang, and A. Dai, 2006a: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res., 111, D10108, https://doi.org/10.1029/2005JD006685.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2006b: Development of the regional Climate-Weather Research and Forecasting model (CWRF): Treatment of subgrid topography effects. Proc. Seventh Annual WRF User’s Workshop, Boulder, CO, NCAR, 9.3, https://www2.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session9/3-Liang.pdf.

  • Liang, X.-Z., and Coauthors, 2012: Regional Climate–Weather Research and Forecasting Model. Bull. Amer. Meteor. Soc., 93, 13631387, https://doi.org/10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2019: CWRF performance at downscaling China climate characteristics. Climate Dyn., 52, 21592184, https://doi.org/10.1007/s00382-018-4257-5.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2024: DAWN: Dashboard for Agricultural Water Use and Nutrient management—A predictive decision support system to improve crop production in a changing climate. Bull. Amer. Meteor. Soc., 105, E432E441, https://doi.org/10.1175/BAMS-D-22-0221.1.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., D. W. Shin, S. Cocke, T. E. Larow, J. T. Schoof, J. J. O’Brien, and E. P. Chassignet, 2007: Dynamically and statistically downscaled seasonal simulations of maximum surface air temperature over the southeastern United States. J. Geophys. Res., 112, D24102, https://doi.org/10.1029/2007JD008764.

    • Search Google Scholar
    • Export Citation
  • Liu, S., W. Gao, and X.-Z. Liang, 2013: A regional climate model downscaling projection of China future climate change. Climate Dyn., 41, 18711884, https://doi.org/10.1007/s00382-012-1632-5.

    • Search Google Scholar
    • Export Citation
  • Liu, S., J. X. L. Wang, X.-Z. Liang, and V. Morris, 2016: A hybrid approach to improving the skills of seasonal climate outlook at the regional scale. Climate Dyn., 46, 483494, https://doi.org/10.1007/s00382-015-2594-1.

    • Search Google Scholar
    • Export Citation
  • Liu, S.-Y., X.-Z. Liang, W. Gao, and H. Zhang, 2008: Application of Climate-Weather Research and Forecasting model (CWRF) in China: Domain optimization. Chin. J. Atmos. Sci., 32, 457468, https://doi.org/10.3878/j.issn.1006-9895.2008.03.04.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin. J. Climate, 26, 110132, https://doi.org/10.1175/JCLI-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Wang, and K. Fan, 2015: Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv. Atmos. Sci., 32, 577584, https://doi.org/10.1007/s00376-014-4143-y.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, https://doi.org/10.1029/2007JD008674.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., 2008: Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. J. Geophys. Res., 113, D09101, https://doi.org/10.1029/2007JD009199.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, https://doi.org/10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Patarčić, M., and Č. Branković, 2012: Skill of 2-m temperature seasonal forecasts over Europe in ECMWF and RegCM models. Mon. Wea. Rev., 140, 13261346, https://doi.org/10.1175/MWR-D-11-00104.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 47, 919935, https://doi.org/10.1007/s00382-015-2879-4.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2015: Effects of cumulus parameterizations on predictions of summer flood in the central United States. Climate Dyn., 45, 727744, https://doi.org/10.1007/s00382-014-2301-7.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2016: Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J. Adv. Model. Earth Syst., 8, 764785, https://doi.org/10.1002/2015MS000621.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2017: Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Climate Dyn., 49, 225247, https://doi.org/10.1007/s00382-016-3338-6.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and Coauthors, 2019: The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J. Meteor. Res., 33, 540552, https://doi.org/10.1007/s13351-019-8154-6.

    • Search Google Scholar
    • Export Citation
  • Roads, J., S.-C. Chen, and M. Kanamitsu, 2003: U.S. regional climate simulations and seasonal forecasts. J. Geophys. Res., 108, 8606, https://doi.org/10.1029/2002JD002232.

    • Search Google Scholar
    • Export Citation
  • Rontu, L., 2006: A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus, 58A, 6981, https://doi.org/10.1111/j.1600-0870.2006.00162.x.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2016: Added value in regional climate modeling. Wiley Interdiscip. Rev.: Climatic Change, 7, 145159, https://doi.org/10.1002/wcc.378.

    • Search Google Scholar
    • Export Citation
  • Samel, A. N., W.-C. Wang, and X.-Z. Liang, 1999: The monsoon rainband over China and relationships with the Eurasian circulation. J. Climate, 12, 115131, https://doi.org/10.1175/1520-0442(1999)012%3C0115:TMROCA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sangelantoni, L., R. Ferretti, and G. Redaelli, 2019: Toward a regional-scale seasonal climate prediction system over central Italy based on dynamical downscaling. Climate, 7, 120, https://doi.org/10.3390/cli7100120.

    • Search Google Scholar
    • Export Citation
  • Shi, W., H. Chen, and X.-Z. Liang, 2021: CWRF-based ensemble simulation of tropical cyclone activity near China and its sensitivity to the model physical parameterization schemes. Atmos. Ocean. Sci. Lett., 14, 100004, https://doi.org/10.1016/j.aosl.2020.100004.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2020a: Improving US extreme precipitation simulation: Dependence on cumulus parameterization and underlying mechanism. Climate Dyn., 55, 13251352, https://doi.org/10.1007/s00382-020-05328-w.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2020b: Improving US extreme precipitation simulation: Sensitivity to physics parameterizations. Climate Dyn., 54, 48914918, https://doi.org/10.1007/s00382-020-05267-6.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2023a: Understanding and reducing warm and dry summer biases in the central United States: Improving cumulus parameterization. J. Climate, 36, 20152034, https://doi.org/10.1175/JCLI-D-22-0254.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2023b: Understanding and reducing warm and dry summer biases in the central United States: Analytical modeling to identify the mechanisms for CMIP ensemble error spread. J. Climate, 36, 20352054, https://doi.org/10.1175/JCLI-D-22-0255.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., H. Li, S. E. Zebiak, D. F. Moncunill, F. D. A. D. S. Filho, and A. D. Moura, 2006: An operational dynamical downscaling prediction system for Nordeste Brazil and the 2002–04 real-time forecast evaluation. J. Climate, 19, 19902007, https://doi.org/10.1175/JCLI3715.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. A., A. A. Berg, and W. J. Merryfield, 2016: Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring. Climate Dyn., 47, 4965, https://doi.org/10.1007/s00382-015-2821-9.

    • Search Google Scholar
    • Export Citation
  • Van, T. P., H. V. Nguyen, L. T. Tuan, T. N. Quang, T. Ngo-Duc, P. Laux, and T. N. Xuan, 2014: Seasonal prediction of surface air temperature across Vietnam using the regional climate model version 4.2 (RegCM4.2). Adv. Meteor., 2024, 245104, https://doi.org/10.1155/2014/245104.

    • Search Google Scholar
    • Export Citation
  • Viovy, N., 2018: CRUNCEP version 7—Atmospheric forcing data for the community land model. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 7 February 2022, https://doi.org/10.5065/PZ8F-F017.

  • Wang, B., 1987: The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44, 29782994, https://doi.org/10.1175/1520-0469(1987)044<2978:TDMFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., X.-Z. Liang, and A. N. Samel, 2011: AMIP GCM simulations of precipitation variability over the Yangtze River valley. J. Climate, 24, 21162133, https://doi.org/10.1175/2011JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., K. Yang, Y. Li, D. Wu, and Y. Bo, 2017: Impacts of spatiotemporal Anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China. J. Climate, 30, 885903, https://doi.org/10.1175/JCLI-D-16-0041.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149168, https://doi.org/10.1007/s00376-014-0016-7.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2022: Predicting climate anomalies: A real challenge. Atmos. Ocean. Sci. Lett., 15, 100115, https://doi.org/10.1016/j.aosl.2021.100115.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-P., and R. Leuning, 1998: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteor., 91, 89111, https://doi.org/10.1016/S0168-1923(98)00061-6.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, and G. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Climate Dyn., 42, 28852898, https://doi.org/10.1007/s00382-013-1800-2.

    • Search Google Scholar
    • Export Citation
  • Wei, J., J. Zhao, H. Chen, and X.-Z. Liang, 2021: Coupling between land surface fluxes and lifting condensation level: Mechanisms and sensitivity to model physics parameterizations. J. Geophys. Res. Atmos., 126, e2020JD034313, https://doi.org/10.1029/2020JD034313.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, J., and X.-J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Diqiu Wulixue Bao, 56, 11021111, https://doi.org/10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 3456, https://doi.org/10.1007/s13351-014-3041-7.

    • Search Google Scholar
    • Export Citation
  • Xin, Y., Y. Dai, J. Li, X. Rong, and G. Zhang, 2019: Coupling the Common Land Model to ECHAM5 atmospheric general circulation model. J. Meteor. Res., 33, 251263, https://doi.org/10.1007/s13351-019-8117-y.

    • Search Google Scholar
    • Export Citation
  • Xu, H., X.-Z. Liang, and Y. Xue, 2024: Regional climate modeling to understand Tibetan heating remote impacts on East China precipitation. Climate Dyn., 62, 26832701, https://doi.org/10.1007/s00382-022-06266-5.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Z. Janjic, J. Dudhia, R. Vasic, and F. De Sales, 2014: A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res., 147