The Role of Cloud-Radiative Interaction in Tropical Circulation and the Madden–Julian Oscillation

Yuanyuan Huang aDivision of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China

Search for other papers by Yuanyuan Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4206-2632
,
Daehyun Kim bSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
cDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Daehyun Kim in
Current site
Google Scholar
PubMed
Close
,
Tian Zhou dCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu, China

Search for other papers by Tian Zhou in
Current site
Google Scholar
PubMed
Close
, and
Xiaoming Shi aDivision of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
eCenter for Ocean Research in Hong Kong and Macau, Hong Kong University of Science and Technology, Hong Kong, China

Search for other papers by Xiaoming Shi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5329-7851
Restricted access

Abstract

Cloud-radiative interaction (CRI) is a fundamental process that modulates tropical circulation and intraseasonal variability, including the Madden–Julian oscillation (MJO). In this study, we investigate how the mean state of the tropical atmosphere and the MJO respond to CRI intensity changes and provide insights into the underlying mechanisms, using the aquaplanet configuration in the Community Earth System Model, version 2 (CESM2). By enhancing CRI through tuning the DCS parameter (an autoconversion threshold size in the Morrison and Gettelman cloud microphysics scheme), we demonstrate that DCS-induced CRI intensification is linked to a warmer troposphere, increased tropical moisture, strengthened Hadley cell (HC), stronger trade winds, and a stronger equatorward intertropical convergence zone (ITCZ) with more clouds and precipitation, reflecting stronger cloud–radiation–circulation feedback. The intensified CRI also leads to the intensification and slower propagation of the simulated MJO-like mode despite the MJO-like signals becoming less distinguishable from the background due to the influence of other waves. The MJO intensification is likely associated with the mean state changes that support the development of deep convection. Moreover, the CRI itself, especially the interaction with the longwave radiation, also directly influences the MJO’s maintenance and propagation, more contributing to the maintenance of column moist static energy (MSE) and deceleration of its eastward propagation on intraseasonal time scales.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@ust.hk

Abstract

Cloud-radiative interaction (CRI) is a fundamental process that modulates tropical circulation and intraseasonal variability, including the Madden–Julian oscillation (MJO). In this study, we investigate how the mean state of the tropical atmosphere and the MJO respond to CRI intensity changes and provide insights into the underlying mechanisms, using the aquaplanet configuration in the Community Earth System Model, version 2 (CESM2). By enhancing CRI through tuning the DCS parameter (an autoconversion threshold size in the Morrison and Gettelman cloud microphysics scheme), we demonstrate that DCS-induced CRI intensification is linked to a warmer troposphere, increased tropical moisture, strengthened Hadley cell (HC), stronger trade winds, and a stronger equatorward intertropical convergence zone (ITCZ) with more clouds and precipitation, reflecting stronger cloud–radiation–circulation feedback. The intensified CRI also leads to the intensification and slower propagation of the simulated MJO-like mode despite the MJO-like signals becoming less distinguishable from the background due to the influence of other waves. The MJO intensification is likely associated with the mean state changes that support the development of deep convection. Moreover, the CRI itself, especially the interaction with the longwave radiation, also directly influences the MJO’s maintenance and propagation, more contributing to the maintenance of column moist static energy (MSE) and deceleration of its eastward propagation on intraseasonal time scales.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@ust.hk
Save
  • Adames, Á. F., and J. M. Wallace, 2014a: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, https://doi.org/10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014b: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, https://doi.org/10.1175/JAS-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., B. Medeiros, A. C. Clement, and J. G. Olson, 2020: Investigating the role of cloud-radiation interactions in subseasonal tropical disturbances. Geophys. Res. Lett., 47, e2019GL086817, https://doi.org/10.1029/2019GL086817.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, https://doi.org/10.1007/s40641-015-0010-x.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, X. Liu, D. M. W. Frierson, and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos., 118, 51365146, https://doi.org/10.1002/jgrd.50461.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 854864, https://doi.org/10.1002/2015MS000434.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., H. Morrison, A. Bansemer, A. Gettelman, and A. J. Heymsfield, 2014: Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations. Atmos. Chem. Phys., 14, 10 10310 118, https://doi.org/10.5194/acp-14-10103-2014.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., H. Morrison, D. Mitchell, A. Gettelman, and E. Erfani, 2017: Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Climate, 30, 609629, https://doi.org/10.1175/JCLI-D-16-0050.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Y. T. Chung, and X. Shi, 2021: The essential role of cloud-radiation interaction in nonrotating convective self-aggregation. Geophys. Res. Lett., 48, e2021GL095102, https://doi.org/10.1029/2021GL095102.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, https://doi.org/10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094, https://doi.org/10.1175/JAS3582.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Search Google Scholar
    • Export Citation
  • Fuchs-Stone, Ž., 2020: WISHE-moisture mode in a vertically resolved model. J. Adv. Model. Earth Syst., 12, e2019MS001839, https://doi.org/10.1029/2019MS001839.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., P.-C. Hsu, and T. Li, 2019: Effects of high-frequency activity on latent heat flux of MJO. Climate Dyn., 52, 14711485, https://doi.org/10.1007/s00382-018-4208-1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2016: The role of cloud radiative heating in determining the location of the ITCZ in aquaplanet simulations. J. Climate, 29, 27412763, https://doi.org/10.1175/JCLI-D-15-0521.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., Z. Han, and S. Wang, 2022: Cloud radiative effects on MJO development in DYNAMO. J. Climate, 35, 69696984, https://doi.org/10.1175/JCLI-D-21-0882.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden-Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian oscillation: An observational analysis using ISCCP Data and ECMWF analyses. J. Climate, 9, 30863104, https://doi.org/10.1175/1520-0442(1996)009<3086:TROLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, M.-S. Ahn, and S.-I. An, 2021: The role of the background meridional moisture gradient on the propagation of the MJO over the Maritime Continent. J. Climate, 34, 65656581, https://doi.org/10.1175/JCLI-D-20-0085.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, and W. R. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539, https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 21914 233, https://doi.org/10.1029/2001JD900143.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., and Coauthors, 2016: Inter-model comparison of subseasonal tropical variability in aquaplanet experiments: Effect of a warm pool. J. Adv. Model. Earth Syst., 8, 15261551, https://doi.org/10.1002/2016MS000683.

    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, https://doi.org/10.1175/JCLI-D-14-00825.1.

    • Search Google Scholar
    • Export Citation
  • Lyu, M., X. Jiang, Z. Wu, D. Kim, and Á. F. Adames, 2021: Zonal-scale of the Madden-Julian oscillation and its propagation speed on the interannual time-scale. Geophys. Res. Lett., 48, e2020GL091239, https://doi.org/10.1029/2020GL091239.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028%3C0702:DOADOI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5, https://doi.org/10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, and J. G. Olson, 2016: Reference aquaplanet climate in the community atmosphere model, version 5. J. Adv. Model. Earth Syst., 8, 406424, https://doi.org/10.1002/2015MS000593.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., A. C. Clement, J. J. Benedict, and B. Zhang, 2021: Investigating the impact of cloud-radiative feedbacks on tropical precipitation extremes. npj Climate Atmos. Sci., 4, 18, https://doi.org/10.1038/s41612-021-00174-x.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Pathak, R., S. Sahany, and S. K. Mishra, 2020: Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model. Sci. Rep., 10, 17499, https://doi.org/10.1038/s41598-020-74441-x.

    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kang, D. Kim, S.-I. An, and T. Wang, 2023: MJO in different orbital regimes: Role of the mean state in the MJO’s amplitude during boreal winter. J. Climate, 36, 44754490, https://doi.org/10.1175/JCLI-D-22-0725.1.

    • Search Google Scholar
    • Export Citation
  • Sentić, S., Ž. Fuchs-Stone, and D. J. Raymond, 2020: The Madden-Julian oscillation and mean easterly winds. J. Geophys. Res. Atmos., 125, e2019JD030869, https://doi.org/10.1029/2019JD030869.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Search Google Scholar
    • Export Citation
  • Shi, X., D. Kim, Á. F. Adames, and J. Sukhatme, 2018: WISHE-moisture mode in an aquaplanet simulation. J. Adv. Model. Earth Syst., 10, 23932407, https://doi.org/10.1029/2018MS001441.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, https://doi.org/10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., and V. Ramanathan, 2003: A simple moist tropical atmosphere model: The role of cloud radiative forcing. J. Climate, 16, 20862092, https://doi.org/10.1175/1520-0442(2003)016%3C2086:ASMTAM%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., D. S. Battisti, D. W. J. Thompson, and D. L. Hartmann, 2023: The Atmospheric General Circulation. Cambridge University Press, 456 pp., https://doi.org/10.1017/9781108563857.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williamson, L., and Coauthors, 2012: The APE atlas. NCAR Tech. Note NCAR/TN-484+STR, 532 pp., https://doi.org/10.5065/D6FF3QBR.

  • Zhang, B., R. J. Kramer, and B. J. Soden, 2019: Radiative feedbacks associated with the Madden–Julian oscillation. J. Climate, 32, 70557065, https://doi.org/10.1175/JCLI-D-19-0144.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., B. J. Soden, G. A. Vecchi, and W. Yang, 2021: Investigating the causes and impacts of convective aggregation in a high resolution atmospheric GCM. J. Adv. Model. Earth Syst., 13, e2021MS002675, https://doi.org/10.1029/2021MS002675.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Ling, 2012: Potential vorticity of the Madden–Julian oscillation. J. Atmos. Sci., 69, 6578, https://doi.org/10.1175/JAS-D-11-081.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 49634982, https://doi.org/10.5194/acp-13-4963-2013.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2013: A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the community atmosphere model CAM5. Atmos. Chem. Phys., 13, 10 96910 987, https://doi.org/10.5194/acp-13-10969-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 376 376 137
Full Text Views 103 103 41
PDF Downloads 100 100 42