Characterizing the 2010 Russian Heat Wave–Pakistan Flood Concurrent Extreme over the Last Millennium Using the Great Eurasian Drought Atlas

Benjamin I. Cook aNASA Goddard Institute for Space Studies, New York, New York
bLamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
,
Edward R. Cook bLamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Edward R. Cook in
Current site
Google Scholar
PubMed
Close
,
Kevin J. Anchukaitis bLamont-Doherty Earth Observatory, Palisades, New York
cLaboratory of Tree Ring Research, The University of Arizona, Tucson, Arizona
dSchool of Geography, Development and Environment, The University of Arizona, Tucson, Arizona

Search for other papers by Kevin J. Anchukaitis in
Current site
Google Scholar
PubMed
Close
, and
Deepti Singh eSchool of the Environment, Washington State University, Vancouver, Washington

Search for other papers by Deepti Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During summer 2010, exceptional heat and drought in western Russia (WRU) occurred simultaneously with heavy rainfall and flooding in northern Pakistan (NPK). Here, we use the Great Eurasian Drought Atlas (GEDA), a new 1021-yr tree-ring reconstruction of summer soil moisture, to investigate the variability and dynamics of this exceptional spatially concurrent climate extreme over the last millennium. Summer 2010 in the GEDA was the second driest year over WRU and the largest wet–dry contrast between NPK and WRU; it was also the second warmest year over WRU in an independent 1015-yr temperature reconstruction. Soil moisture variability is only weakly correlated between the two regions, and 2010 event analogs are rare, occurring in 31 (3.0%) or 52 (5.1%) years in the GEDA, depending on the definition used. Post-1900 is significantly drier in WRU and wetter in NPK compared to previous centuries, increasing the likelihood of concurrent wet NPK–dry WRU extremes, with over 20% of the events in the record occurring in this interval. The dynamics of wet NPK–dry WRU events like 2010 are well captured by two principal components in the GEDA, modes correlated with ridging over northern Europe and western Russia and a pan-hemispheric extratropical wave train pattern similar to that observed in 2010. Our results highlight how high-resolution paleoclimate reconstructions can be used to capture some of the most extreme events in the climate system, investigate their physical drivers, and allow us to assess their behavior across longer time scales than available from shorter instrumental records.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov

Abstract

During summer 2010, exceptional heat and drought in western Russia (WRU) occurred simultaneously with heavy rainfall and flooding in northern Pakistan (NPK). Here, we use the Great Eurasian Drought Atlas (GEDA), a new 1021-yr tree-ring reconstruction of summer soil moisture, to investigate the variability and dynamics of this exceptional spatially concurrent climate extreme over the last millennium. Summer 2010 in the GEDA was the second driest year over WRU and the largest wet–dry contrast between NPK and WRU; it was also the second warmest year over WRU in an independent 1015-yr temperature reconstruction. Soil moisture variability is only weakly correlated between the two regions, and 2010 event analogs are rare, occurring in 31 (3.0%) or 52 (5.1%) years in the GEDA, depending on the definition used. Post-1900 is significantly drier in WRU and wetter in NPK compared to previous centuries, increasing the likelihood of concurrent wet NPK–dry WRU extremes, with over 20% of the events in the record occurring in this interval. The dynamics of wet NPK–dry WRU events like 2010 are well captured by two principal components in the GEDA, modes correlated with ridging over northern Europe and western Russia and a pan-hemispheric extratropical wave train pattern similar to that observed in 2010. Our results highlight how high-resolution paleoclimate reconstructions can be used to capture some of the most extreme events in the climate system, investigate their physical drivers, and allow us to assess their behavior across longer time scales than available from shorter instrumental records.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 7.0347 MB)
Save
  • Anchukaitis, K. J., and Coauthors, 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat. Sci. Rev., 163, 122, https://doi.org/10.1016/j.quascirev.2017.02.020.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Angélil, O., and Coauthors, 2016: Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Wea. Climate Extremes, 13, 3543, https://doi.org/10.1016/j.wace.2016.07.001.

    • Search Google Scholar
    • Export Citation
  • Barichivich, J., T. Osborn, I. Harris, G. van der Schrier, and P. Jones, 2022: Monitoring global drought using the self-calibrating Palmer drought severity index [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S31S33.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Search Google Scholar
    • Export Citation
  • Borkotoky, S. S., A. P. Williams, E. R. Cook, and S. Steinschneider, 2021: Reconstructing extreme precipitation in the Sacramento River watershed using tree-ring based proxies of cold-season precipitation. Water Resour. Res., 57, e2020WR028824, https://doi.org/10.1029/2020WR028824.

    • Search Google Scholar
    • Export Citation
  • Borkotoky, S. S., A. P. Williams, and S. Steinschneider, 2023: Six hundred years of reconstructed atmospheric river activity along the US West Coast. J. Geophys. Res. Atmos., 128, e2022JD038321, https://doi.org/10.1029/2022JD038321.

    • Search Google Scholar
    • Export Citation
  • Bortnik, J., and E. Camporeale, 2021: Ten ways to apply machine learning in Earth and space sciences. 2021 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract IN12A-06, https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/870084.

  • Christian, J. I., J. B. Basara, E. D. Hunt, J. A. Otkin, and X. Xiao, 2020: Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett., 15, 094078, https://doi.org/10.1088/1748-9326/ab9faf.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, K. Marvel, A. P. Williams, J. E. Smerdon, and K. J. Anchukaitis, 2020: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. J. Anchukaitis, B. M. Buckley, R. D. D’Arrigo, G. C. Jacoby, and W. E. Wright, 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, https://doi.org/10.1126/science.1185188.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and Coauthors, 2015: Old world megadroughts and pluvials during the common era. Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and Coauthors, 2020: The European Russia drought atlas (1400–2016 CE). Climate Dyn., 54, 23172335, https://doi.org/10.1007/s00382-019-05115-2.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Search Google Scholar
    • Export Citation
  • Di Capua, G., and S. Rahmstorf, 2023: Extreme weather in a changing climate. Environ. Res. Lett., 18, 102001, https://doi.org/10.1088/1748-9326/acfb23.

    • Search Google Scholar
    • Export Citation
  • Di Capua, G., S. Sparrow, K. Kornhuber, E. Rousi, S. Osprey, D. Wallom, B. van den Hurk, and D. Coumou, 2021: Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. npj Climate Atmos. Sci., 4, 55, https://doi.org/10.1038/s41612-021-00211-9.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Esper, J., and Coauthors, 2018: Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 50, 8190, https://doi.org/10.1016/j.dendro.2018.06.001.

    • Search Google Scholar
    • Export Citation
  • Fritts, H. C., 1976: Tree Rings and Climate. Academic Press, 582 pp.

  • Gagen, M. H., E. Zorita, D. McCarroll, M. Zahn, G. H. F. Young, and I. Robertson, 2016: North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci., 9, 630635, https://doi.org/10.1038/ngeo2752.

    • Search Google Scholar
    • Export Citation
  • Guo, J., and Coauthors, 2016: Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos., 121, 64726488, https://doi.org/10.1002/2015JD023257.

    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Search Google Scholar
    • Export Citation
  • Hauser, M., R. Orth, and S. I. Seneviratne, 2016: Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett., 43, 28192826, https://doi.org/10.1002/2016GL068036.

    • Search Google Scholar
    • Export Citation
  • Heeter, K. J., G. L. Harley, J. T. Abatzoglou, K. J. Anchukaitis, E. R. Cook, B. L. Coulthard, L. A. Dye, and I. K. Homfeld, 2023: Unprecedented 21st century heat across the Pacific northwest of North America. npj Climate Atmos. Sci., 6, 5, https://doi.org/10.1038/s41612-023-00340-3.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, S. Medina, S. R. Brodzik, and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, https://doi.org/10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, E., and Coauthors, 2021: Agricultural and food security impacts from the 2010 Russia flash drought. Wea. Climate Extremes, 34, 100383, https://doi.org/10.1016/j.wace.2021.100383.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Quart. J. Roy. Meteor. Soc., 134, 12011220, https://doi.org/10.1002/qj.287.

    • Search Google Scholar
    • Export Citation
  • Luo, F., and Coauthors, 2022: Summertime Rossby waves in climate models: Substantial biases in surface imprint associated with small biases in upper-level circulation. Wea. Climate Dyn., 3, 905935, https://doi.org/10.5194/wcd-3-905-2022.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. Vilà-Guerau de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Pederson, N., A. E. Hessl, N. Baatarbileg, K. J. Anchukaitis, and N. Di Cosmo, 2014: Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc. Natl. Acad. Sci. USA, 111, 43754379, https://doi.org/10.1073/pnas.1318677111.

    • Search Google Scholar
    • Export Citation
  • Priya, P., M. Mujumdar, T. P. Sabin, P. Terray, and R. Krishnan, 2015: Impacts of Indo-Pacific sea surface temperature anomalies on the summer monsoon circulation and heavy precipitation over northwest India–Pakistan region during 2010. J. Climate, 28, 37143730, https://doi.org/10.1175/JCLI-D-14-00595.1.

    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., P. Prasad, S. T. A. Raj, M. R. Raman, and G. Basha, 2021: Changing patterns in aerosol vertical distribution over South and East Asia. Sci. Rep., 11, 308, https://doi.org/10.1038/s41598-020-79361-4.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robeson, S. M., J. T. Maxwell, and D. L. Ficklin, 2020: Bias correction of paleoclimatic reconstructions: A new look at 1,200+ years of Upper Colorado River flow. Geophys. Res. Lett., 47, e2019GL086689, https://doi.org/10.1029/2019GL086689.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Y. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Search Google Scholar
    • Export Citation
  • Shaposhnikov, D., and Coauthors, 2014: Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology, 25, 359364, https://doi.org/10.1097/EDE.0000000000000090.

    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Bollasina, M. Ting, and N. S. Diffenbaugh, 2019: Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Climate Dyn., 52, 63016320, https://doi.org/10.1007/s00382-018-4512-9.

    • Search Google Scholar
    • Export Citation
  • Singh, J., B. I. Cook, K. Marvel, S. McDermid, G. G. Persad, B. Rajaratnam, and D. Singh, 2023: Anthropogenic aerosols delay the emergence of GHGS-forced wetting of south Asian rainy seasons under a fossil-fuel intensive pathway. Geophys. Res. Lett., 50, e2023GL103949, https://doi.org/10.1029/2023GL103949.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2021: An evaluation of the performance of the twentieth century reanalysis version 3. J. Climate, 34, 14171438, https://doi.org/10.1175/JCLI-D-20-0505.1.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., E. R. Cook, and N. J. Steiger, 2023: The historical development of large-scale paleoclimate field reconstructions over the Common Era. Rev. Geophys., 61, e2022RG000782, https://doi.org/10.1029/2022RG000782.

    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., M. Ho, A. P. Williams, E. R. Cook, and U. Lall, 2018: A 500-year tree ring-based reconstruction of extreme cold-season precipitation and number of atmospheric river landfalls across the southwestern United States. Geophys. Res. Lett., 45, 56725680, https://doi.org/10.1029/2018GL078089.

    • Search Google Scholar
    • Export Citation
  • St. George, S., and T. R. Ault, 2014: The imprint of climate within Northern Hemisphere trees. Quat. Sci. Rev., 89, 14, https://doi.org/10.1016/j.quascirev.2014.01.007.

    • Search Google Scholar
    • Export Citation
  • St. George, S., D. M. Meko, and E. R. Cook, 2010: The seasonality of precipitation signals embedded within the North American Drought Atlas. Holocene, 20, 983988, https://doi.org/10.1177/0959683610365937.

    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos., 118, 40254048, https://doi.org/10.1002/jgrd.50355.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., L. Xue, J. Liu, K. Ding, S. Lou, A. Ding, J. Wang, and X. Huang, 2022: Roles of atmospheric aerosols in extreme meteorological events: A systematic review. Current Pollut. Rep., 8, 177188, https://doi.org/10.1007/s40726-022-00216-9.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. E. Toma, and H.-M. Kim, 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett., 38, L04806, https://doi.org/10.1029/2010GL046346.

    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating palmer drought severity index. J. Climate, 17, 23352351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, R. H., K. Kornhuber, O. Martius, and V. Wirth, 2022: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent, and extreme extratropical weather. Bull. Amer. Meteor. Soc., 103, E923E935, https://doi.org/10.1175/BAMS-D-21-0170.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, R., and Coauthors, 2016: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev., 134, 118, https://doi.org/10.1016/j.quascirev.2015.12.005.

    • Search Google Scholar
    • Export Citation
  • Wise, E. K., and M. P. Dannenberg, 2019: Climate factors leading to asymmetric extreme capture in the tree-ring record. Geophys. Res. Lett., 46, 34083416, https://doi.org/10.1029/2019GL082295.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1133 1133 284
Full Text Views 210 210 32
PDF Downloads 253 253 40