Process-Oriented Compound Long-Duration Dry and Hot Events in China: Atmospheric Conditions, Moisture, and Heat Budget Analyses

Yi Yang aKey Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, China
bSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yi Yang in
Current site
Google Scholar
PubMed
Close
and
Jianping Tang aKey Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, China
bSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Jianping Tang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1098-2656
Restricted access

Abstract

Summertime compound dry and hot events pose severe threats to agricultural production and human health, especially those with a long duration. Considering the joint evolution of such hazards in space and time, spatiotemporal compound long-duration dry and hot (SLDDH) events in China during 1961–2022 are identified with a process-oriented method. Here, we investigate the associated large-scale atmospheric circulation patterns and the physical processes causing their precipitation and temperature anomalies. In all regions of China, this persistent dry–hot compound extreme is accompanied by anomalous high pressure systems along with enhanced descending motion, increased net surface solar radiation, and decreased water vapor flux convergence. Moisture budget diagnosis shows that precipitation deficits during the SLDDH events are produced primarily by the suppressed vertical moisture advection associated with the dynamical contribution of anomalous subsidence, while the thermodynamic process due to the anomaly in atmospheric moisture content makes a small contribution. Horizontal temperature advection generally plays a negative role in sustaining SLDDH events, while it helps trigger the events in North China. In most regions, adiabatic warming due to abnormal subsidence plays a dominant role in determining the near-surface high temperatures during the long-lasting warm and dry periods, whereas diabatic heating has a cooling or small effect therein. However, in some northern areas such as North China and northern Xinjiang, hot extremes during SLDDH events arise from a combination of diabatic heating and adiabatic warming. This study thus quantifies and reveals the crucial factors leading to the severity of compound dry and hot events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Tang, jptang@nju.edu.cn

Abstract

Summertime compound dry and hot events pose severe threats to agricultural production and human health, especially those with a long duration. Considering the joint evolution of such hazards in space and time, spatiotemporal compound long-duration dry and hot (SLDDH) events in China during 1961–2022 are identified with a process-oriented method. Here, we investigate the associated large-scale atmospheric circulation patterns and the physical processes causing their precipitation and temperature anomalies. In all regions of China, this persistent dry–hot compound extreme is accompanied by anomalous high pressure systems along with enhanced descending motion, increased net surface solar radiation, and decreased water vapor flux convergence. Moisture budget diagnosis shows that precipitation deficits during the SLDDH events are produced primarily by the suppressed vertical moisture advection associated with the dynamical contribution of anomalous subsidence, while the thermodynamic process due to the anomaly in atmospheric moisture content makes a small contribution. Horizontal temperature advection generally plays a negative role in sustaining SLDDH events, while it helps trigger the events in North China. In most regions, adiabatic warming due to abnormal subsidence plays a dominant role in determining the near-surface high temperatures during the long-lasting warm and dry periods, whereas diabatic heating has a cooling or small effect therein. However, in some northern areas such as North China and northern Xinjiang, hot extremes during SLDDH events arise from a combination of diabatic heating and adiabatic warming. This study thus quantifies and reveals the crucial factors leading to the severity of compound dry and hot events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Tang, jptang@nju.edu.cn
Save
  • Ali, S. M., O. Martius, and M. Röthlisberger, 2021: Recurrent Rossby wave packets modulate the persistence of dry and wet spells across the globe. Geophys. Res. Lett., 48, e2020GL091452, https://doi.org/10.1029/2020GL091452.

    • Search Google Scholar
    • Export Citation
  • Alizadeh, M. R., J. Adamowski, M. R. Nikoo, A. AghaKouchak, P. Dennison, and M. Sadeg, 2020: A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv., 6, eaaz4571, https://doi.org/10.1126/sciadv.aaz4571.

    • Search Google Scholar
    • Export Citation
  • Bao, M., and J. M. Wallace, 2015: Cluster analysis of Northern Hemisphere wintertime 500-hPa flow regimes during 1920–2014. J. Atmos. Sci., 72, 35973608, https://doi.org/10.1175/JAS-D-15-0001.1.

    • Search Google Scholar
    • Export Citation
  • Bieli, M., S. Pfahl, and H. Wernli, 2015: A Lagrangian investigation of hot and cold temperature extremes in Europe. Quart. J. Roy. Meteor. Soc., 141, 98108, https://doi.org/10.1002/qj.2339.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2019: State of the climate in 2018. Bull. Amer. Meteor. Soc., 100, SiS306, https://doi.org/10.1175/2019BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Chen, D., C. Y. Zhou, and D. M. Qi, 2019: Relationship between atmospheric heat source over Qinghai-Tibetan Plateau and its surrounding area and rainstorm in Sichuan Basin during summer (in Chinese). Plateau Meteor., 38, 11491157.

    • Search Google Scholar
    • Export Citation
  • Chen, J., X. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer. J. Climate, 28, 72797296, https://doi.org/10.1175/JCLI-D-14-00859.1.

    • Search Google Scholar
    • Export Citation
  • Chen, L., B. Zhang, and Y. Zhang, 2006: Progress in research on the East Asian monsoon. J. Appl. Meteor. Sci., 17, 711724.

  • Ciais, Ph., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533, https://doi.org/10.1038/nature03972.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Search Google Scholar
    • Export Citation
  • Ding, T., and H. Gao, 2020: The record-breaking extreme drought in Yunnan Province, southwest China during spring-early summer of 2019 and possible causes. J. Meteor. Res., 34, 9971012, https://doi.org/10.1007/s13351-020-0032-8.

    • Search Google Scholar
    • Export Citation
  • Ding, T., H. Gao, and W. Li, 2018: Extreme high‐temperature event in southern China in 2016 and the possible role of cross‐equatorial flows. Int. J. Climatol., 38, 35793594, https://doi.org/10.1002/joc.5518.

    • Search Google Scholar
    • Export Citation
  • Dong, C., X. Wang, Y. Ran, and Z. Nawaz, 2022: Heatwaves significantly slow the vegetation growth rate on the Tibetan Plateau. Remote Sens., 14, 2402, https://doi.org/10.3390/rs14102402.

    • Search Google Scholar
    • Export Citation
  • Dong, W., X. Jia, and R. Wu, 2023: Impact of summer Tibetan Plateau snow cover on the variability of concurrent compound heatwaves in the Northern Hemisphere. Environ. Res. Lett., 19, 014057, https://doi.org/10.1088/1748-9326/ad1435.

    • Search Google Scholar
    • Export Citation
  • Duan, A., M. Wang, Y. Lei, and Y. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261275, https://doi.org/10.1175/JCLI-D-11-00669.1.

    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Search Google Scholar
    • Export Citation
  • Felsche, E., A. Böhnisch, and R. Ludwig, 2023: Inter-seasonal connection of typical European heatwave patterns to soil moisture. npj Climate Atmos. Sci., 6, 1, https://doi.org/10.1038/s41612-023-00330-5.

    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, D20114, https://doi.org/10.1029/2011JD017012.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., B. Legras, A. Beljaars, J.-J. Morcrette, A. Simmons, A. M. Tompkins, and S. Uppala, 2009: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 2137, https://doi.org/10.1002/qj.361.

    • Search Google Scholar
    • Export Citation
  • Gampe, D., J. Zscheischler, M. Reichstein, M. O’Sullivan, W. K. Smith, S. Sitch, and W. Buermann, 2021: Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Climate Change, 11, 772779, https://doi.org/10.1038/s41558-021-01112-8.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Search Google Scholar
    • Export Citation
  • Ge, J., Q. You, and Y. Zhang, 2019: Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmos. Res., 218, 364371, https://doi.org/10.1016/j.atmosres.2018.12.018.

    • Search Google Scholar
    • Export Citation
  • Geirinhas, J. L., A. Russo, R. Libonati, P. M. Sousa, D. G. Miralles, and R. M. Trigo, 2021: Recent increasing frequency of compound summer drought and heatwaves in southeast Brazil. Environ. Res. Lett., 16, 034036, https://doi.org/10.1088/1748-9326/abe0eb.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., F. Hao, V. P. Singh, and X. Zhang, 2018: Quantifying the relationship between compound dry and hot events and El Niño-Southern Oscillation (ENSO) at the global scale. J. Hydrol., 567, 332338, https://doi.org/10.1016/j.jhydrol.2018.10.022.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and Coauthors, 2022: Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Sci. Rev., 235, 104241, https://doi.org/10.1016/j.earscirev.2022.104241.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and R. H. Grumm, 2001: Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon. Wea. Rev., 129, 24262442, https://doi.org/10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Herzschuh, U., and Coauthors, 2019: Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun., 10, 2376, https://doi.org/10.1038/s41467-019-09866-8.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Search Google Scholar
    • Export Citation
  • Huang, W., T. Qiu, Z. Yang, D. Lin, J. S. Wright, B. Wang, and X. He, 2018: On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 123, 12 69212 714, https://doi.org/10.1029/2018JD028921.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.

  • Jiang, J., Y. Liu, J. Mao, and G. Wu, 2023: Extreme heatwave over eastern China in summer 2022: The role of three oceans and local soil moisture feedback. Environ. Res. Lett., 18, 044025, https://doi.org/10.1088/1748-9326/acc5fb.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., G. Tan, and J. A. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717730, https://doi.org/10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 2009: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, 342 pp.

  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Search Google Scholar
    • Export Citation
  • Lemus-Canovas, M., and J. A. Lopez-Bustins, 2021: Assessing internal changes in the future structure of dry–hot compound events: The case of the Pyrenees. Nat. Hazards Earth Syst. Sci., 21, 17211738, https://doi.org/10.5194/nhess-21-1721-2021.

    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2021: Asymmetric response of short-and long-duration dry spells to warming during the warm-rain season over eastern monsoon China. J. Hydrol., 603, 127114, https://doi.org/10.1016/j.jhydrol.2021.127114.

    • Search Google Scholar
    • Export Citation
  • Li, H., S. He, Y. Gao, H. Chen, and H. Wang, 2020: North Atlantic modulation of interdecadal variations in hot drought events over northeastern China. J. Climate, 33, 43154332, https://doi.org/10.1175/JCLI-D-19-0440.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., C. Lu, H. Xu, B. Y. Cheng, and Y. Wang, 2011: Contemporaneous relationships between summer atmospheric heat source over the Tibetan Plateau and drought/flood in eastern southwest China. Chin. J. Atmos. Sci., 35, 422434, https://doi.org/10.3878/j.issn.1006-9895.2011.03.04.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Li, J. Huang, Q. Zhu, and S. Wang, 2020: Attribution of the Tibetan Plateau to northern drought. Natl. Sci. Rev., 7, 489492, https://doi.org/10.1093/nsr/nwz191.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., W. Zhou, R. Zhang, Y. Zhang, and Y. Wang, 2022: Global-scale interpretable drought reconstruction utilizing anomalies of atmospheric dynamics. J. Hydrol., 23, 15071524, https://doi.org/10.1175/JHM-D-22-0006.1.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistic field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., R. West, S. Dong, G. Goni, B. Kirtman, S.-K. Lee, and R. Atlas, 2018: Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes. Nat. Climate Change, 8, 414420, https://doi.org/10.1038/s41558-018-0116-y.

    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, https://doi.org/10.1029/2010GL042764.

    • Search Google Scholar
    • Export Citation
  • Lu, E., W. Cai, Z. Jiang, Q. Zhang, C. Zhang, R. W. Higgins, and M. S. Halpert, 2014: The day-to-day monitoring of the 2011 severe drought in China. Climate Dyn., 43, 19, https://doi.org/10.1007/s00382-013-1987-2.

    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2019: Amplifying effect of ENSO on heat waves in China. Climate Dyn., 52, 32773289, https://doi.org/10.1007/s00382-018-4322-0.

    • Search Google Scholar
    • Export Citation
  • Manning, C., M. Widmann, E. Bevacqua, A. F. Van Loon, D. Maraun, and M. Vrac, 2019: Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett., 14, 094006, https://doi.org/10.1088/1748-9326/ab23bf.

    • Search Google Scholar
    • Export Citation
  • Matusick, G., K. X. Ruthrof, J. Kala, N. C. Brouwers, D. D. Breshears, and G. E. S. J. Hardy, 2018: Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett., 13, 095002, https://doi.org/10.1088/1748-9326/aad8cb.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., P. Gentine, S. I. Seneviratne, and A. J. Teuling, 2019: Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci., 1436, 1935, https://doi.org/10.1111/nyas.13912.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, https://doi.org/10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, S., M. Ashfaq, and A. K. Mishra, 2020: Compound drought and heatwaves at a global scale: The role of natural climate variability‐associated synoptic patterns and land‐surface energy budget anomalies. J. Geophys. Res. Atmos., 125, e2019JD031943, https://doi.org/10.1029/2019JD031943.

    • Search Google Scholar
    • Export Citation
  • Murtagh, F., and P. Contreras, 2012: Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery, 2, 8697, https://doi.org/10.1002/widm.53.

    • Search Google Scholar
    • Export Citation
  • Peng, D., and T. Zhou, 2017: Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos., 122, 90609075, https://doi.org/10.1002/2016JD026424.

    • Search Google Scholar
    • Export Citation
  • Pfleiderer, P., C. F. Schleussner, K. Kornhuber, and D. Coumou, 2019: Summer weather becomes more persistent in a 2°C world. Nat. Climate Change, 9, 666671, https://doi.org/10.1038/s41558-019-0555-0.

    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., and M. J. Reeder, 2017: Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev., 145, 41094125, https://doi.org/10.1175/MWR-D-17-0165.1.

    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and O. Martius, 2019: Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells. Geophys. Res. Lett., 46, 10 10110 111, https://doi.org/10.1029/2019GL083745.

    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and L. Papritz, 2023: Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci., 16, 210216, https://doi.org/10.1038/s41561-023-01126-1.

    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, S. Sippel, M. J. Barcikowska, C. Ghisetti, M. Smid, and B. O’Neill, 2019: Half a degree and rapid socioeconomic development matter for heatwave risk. Nat. Commun., 10, 136, https://doi.org/10.1038/s41467-018-08070-4.

    • Search Google Scholar
    • Export Citation
  • Sánchez‐Benítez, A., R. García‐Herrera, D. Barriopedro, P. M. Sousa, and R. M. Trigo, 2018: June 2017: The earliest European summer mega‐heatwave of reanalysis period. Geophys. Res. Lett., 45, 19551962, https://doi.org/10.1002/2018GL077253.

    • Search Google Scholar
    • Export Citation
  • Sarhadi, A., M. C. Ausín, M. P. Wiper, D. Touma, and N. S. Diffenbaugh, 2018: Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Sci. Adv., 4, eaau3487, https://doi.org/10.1126/sciadv.aau3487.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, D. L., J. Keune, C. C. van Heerwaarden, J. Vilà-Guerau de Arellano, A. J. Teuling, and D. G. Miralles, 2019: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci., 12, 712717, https://doi.org/10.1038/s41561-019-0431-6.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2014: Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin. Sci. Bull., 59, 34653470, https://doi.org/10.1007/s11434-014-0425-0.

    • Search Google Scholar
    • Export Citation
  • Sun, L., G. An, Y. Lian, Z. Gao, X. Tang, B. Shen, and L. Ding, 2002: The unusual characteristics of general circulation in drought and waterlogging years of northeast China. Climate Environ. Res., 7, 102113, https://doi.org/10.3878/j.issn.1006-9585.2002.01.10.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Tan, Z., Y. Liu, T. Shao, R. Luo, M. Luo, and Y. Xie, 2023: Association between Tibetan heat sources and heat waves in China. J. Climate, 36, 79057924, https://doi.org/10.1175/JCLI-D-22-0568.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 4550, https://doi.org/10.1038/nclimate2065.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, S., H. Zuo, S. Zhao, J. Zhang, and S. Lu, 2018: How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe River Valley? Climate Dyn., 51, 41094121, https://doi.org/10.1007/s00382-017-3591-3.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Li, X. Wang, and D. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 29232941, https://doi.org/10.1007/s00382-015-2741-8.

    • Search Google Scholar
    • Export Citation
  • Wang, W., J. Xu, X. Cai, and C. Sun, 2017: Analysis of atmospheric circulation characteristics and mechanism of heat wave and drought in summer of 2013 over the middle and lower reaches of Yangtze River basin. Plateau Meteor., 36, 15951607, https://doi.org/10.7522/j.issn.1000-0534.2016.00129.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., S. Yang, N.-C. Lau, and A. Duan, 2018: Teleconnection between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau. J. Climate, 31, 64336444, https://doi.org/10.1175/JCLI-D-17-0413.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., H. Luo, and S. Yang, 2023: Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environ. Res. Lett., 18, 024023, https://doi.org/10.1088/1748-9326/acb3e5.

    • Search Google Scholar
    • Export Citation
  • Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, https://doi.org/10.1080/01621459.1963.10500845.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. A. Francis, 2019: Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Climate, 32, 11371150, https://doi.org/10.1175/JCLI-D-18-0370.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, https://doi.org/10.1093/nsr/nwu045.

    • Search Google Scholar
    • Export Citation
  • Wu, J., and X.-J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys., 56, 11021111, https://doi.org/10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Z. Hao, F. Hao, X. Zhang, V. P. Singh, and C. Sun, 2021: Influence of large‐scale circulation patterns on compound dry and hot events in China. J. Geophys. Res. Atmos., 126, e2020JD033918, https://doi.org/10.1029/2020JD033918.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and J. Tang, 2023: Substantial differences in compound long‐duration dry and hot events over China between transient and stabilized warmer worlds at 1.5°C global warming. Earth’s Future, 11, e2022EF002994, https://doi.org/10.1029/2022EF002994.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., D. Maraun, A. Ossó, and J. Tang, 2023: Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014. Nat. Hazards Earth Syst. Sci., 23, 693709, https://doi.org/10.5194/nhess-23-693-2023.

    • Search Google Scholar
    • Export Citation
  • Yin, J., and Coauthors, 2023: Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustainability, 6, 259272, https://doi.org/10.1038/s41893-022-01024-1.

    • Search Google Scholar
    • Export Citation
  • Yu, R., and P. Zhai, 2020: More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep., 10, 14576, https://doi.org/10.1038/s41598-020-71312-3.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., and Coauthors, 2016: Severe summer heatwave and drought strongly reduced carbon uptake in southern China. Sci. Rep., 6, 18813, https://doi.org/10.1038/srep18813.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2020: Moisture sources for precipitation in southwest China in summer and the changes during the extreme droughts of 2006 and 2011. J. Hydrol., 591, 125333, https://doi.org/10.1016/j.jhydrol.2020.125333.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., Y. Huang, B. Zhou, H. Wang, and B. Sun, 2024: Who is the major player for 2022 China extreme heat wave? Western Pacific subtropical high or South Asian high? Wea. Climate Extremes, 43, 100640, https://doi.org/10.1016/j.wace.2024.100640.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, J. Zhu, R. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate Atmos. Sci., 3, 7, https://doi.org/10.1038/s41612-020-0110-8.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., Y. Liu, T. Shao, R. Luo, and Z. Tan, 2021: Role of the Tibetan Plateau in northern drought induced by changes in the subtropical westerly jet. J. Climate, 34, 49554969, https://doi.org/10.1175/JCLI-D-20-0799.1.

    • Search Google Scholar
    • Export Citation
  • Zou, H., S. Wu, J. Shan, and S. Wang, 2015: Diagnostic study of the severe high temperature event over Mid-East China in 2013 summer. Acta Meteor. Sin., 73, 481495, https://doi.org/10.11676/qxxb2015.035.

    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2020: A typology of compound weather and climate events. Nat. Rev. Earth Environ., 1, 333347, https://doi.org/10.1038/s43017-020-0060-z.

    • Search Google Scholar
    • Export Citation
  • Zschenderlein, P., A. H. Fink, S. Pfahl, and H. Wernli, 2019: Processes determining heat waves across different European climates. Quart. J. Roy. Meteor. Soc., 145, 29732989, https://doi.org/10.1002/qj.3599.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 365 365
Full Text Views 44 44 44
PDF Downloads 70 70 70