The Role of the Indian Ocean in Controlling the Formation of Multiyear El Niños through Subtropical ENSO Dynamics

Yong-Fu Lin aDepartment of Earth System Science, University of California, Irvine, California

Search for other papers by Yong-Fu Lin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9522-7173
and
Jin-Yi Yu aDepartment of Earth System Science, University of California, Irvine, California

Search for other papers by Jin-Yi Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the key differences between single-year (SY) and multiyear (MY) El Niño properties and examines their relative importance in causing the diverse evolution of El Niño. Using a CESM1 simulation, observation/reanalysis data, and pacemaker coupled model experiments, the study suggests that the Indian Ocean plays a crucial role in distinguishing between the two types of El Niño evolution through subtropical ENSO dynamics. These dynamics can produce MY El Niño events if the climatological northeasterly trade winds are weakened or even reversed over the subtropical Pacific when El Niño peaks. However, El Niño and the positive Indian Ocean dipole (IOD) it typically induces both strengthen the climatological northeasterly trades, preventing the subtropical Pacific dynamics from producing MY events. MY events can occur if the El Niño fails to induce a positive IOD, which is more likely when the El Niño is weak or of the central Pacific type. Additionally, this study finds that such a weak correlation between El Niño and the IOD occurs during decades when the Atlantic multidecadal oscillation (AMO) is in its positive phase. Statistical analyses and pacemaker coupled model experiments confirm that the positive AMO phase increases the likelihood of these conditions, resulting in a higher frequency of MY El Niño events.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Fu Lin, yongful@uci.edu

Abstract

This study explores the key differences between single-year (SY) and multiyear (MY) El Niño properties and examines their relative importance in causing the diverse evolution of El Niño. Using a CESM1 simulation, observation/reanalysis data, and pacemaker coupled model experiments, the study suggests that the Indian Ocean plays a crucial role in distinguishing between the two types of El Niño evolution through subtropical ENSO dynamics. These dynamics can produce MY El Niño events if the climatological northeasterly trade winds are weakened or even reversed over the subtropical Pacific when El Niño peaks. However, El Niño and the positive Indian Ocean dipole (IOD) it typically induces both strengthen the climatological northeasterly trades, preventing the subtropical Pacific dynamics from producing MY events. MY events can occur if the El Niño fails to induce a positive IOD, which is more likely when the El Niño is weak or of the central Pacific type. Additionally, this study finds that such a weak correlation between El Niño and the IOD occurs during decades when the Atlantic multidecadal oscillation (AMO) is in its positive phase. Statistical analyses and pacemaker coupled model experiments confirm that the positive AMO phase increases the likelihood of these conditions, resulting in a higher frequency of MY El Niño events.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Fu Lin, yongful@uci.edu
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the Global Oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2004: Investigation of a large-scale mode of ocean–atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. J. Climate, 17, 40894098, https://doi.org/10.1175/1520-0442(2004)017<4089:IOALMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, https://doi.org/10.1002/grl.50200.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20, 31643189, https://doi.org/10.1175/JCLI4156.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, H. Li, and M. Flügel, 1996: Chaotic dynamics versus stochastic processes in El Niño-Southern Oscillation in coupled ocean-atmosphere models. Physica D, 98, 301320, https://doi.org/10.1016/0167-2789(96)00116-9.

    • Search Google Scholar
    • Export Citation
  • Chen, M., J.-Y. Yu, X. Wang, and W. Jiang, 2019: The changing impact mechanisms of a diverse El Niño on the western Pacific subtropical high. Geophys. Res. Lett., 46, 953962, https://doi.org/10.1029/2018GL081131.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., Z. F. Johnson, S.-Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: El Niño-Southern Oscillation evolution modulated by Atlantic forcing. J. Geophys. Res. Oceans, 125, e2020JC016318, https://doi.org/10.1029/2020JC016318.

    • Search Google Scholar
    • Export Citation
  • Clement, A., P. DiNezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, https://doi.org/10.1175/2011JCLI3973.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Fan, H., C. Wang, and S. Yang, 2023: Asymmetry between positive and negative phases of the Pacific meridional mode: A contributor to ENSO transition complexity. Geophys. Res. Lett., 50, e2023GL104000, https://doi.org/10.1029/2023GL104000.

    • Search Google Scholar
    • Export Citation
  • Fang, S.-W., and J.-Y. Yu, 2020: Contrasting transition complexity between El Niño and La Niña: Observations and CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL088926, https://doi.org/10.1029/2020GL088926.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Guan, C., X. Wang, and H. Yang, 2023: Understanding the development of the 2018/19 central Pacific El Niño. Adv. Atmos. Sci., 40, 177185, https://doi.org/10.1007/s00376-022-1410-1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Hasan, N. A., Y. Chikamoto, and M. J. McPhaden, 2022: The influence of tropical basin interactions on the 2020–2022 double-dip La Niña. Front. Climate, 4, 1001174, https://doi.org/10.3389/fclim.2022.1001174.

    • Search Google Scholar
    • Export Citation
  • He, S., J.-Y. Yu, S. Yang, and S.-W. Fang, 2020: ENSO’s impacts on the tropical Indian and Atlantic Oceans via tropical atmospheric processes: Observations versus CMIP5 simulations. Climate Dyn., 54, 46274640, https://doi.org/10.1007/s00382-020-05247-w.

    • Search Google Scholar
    • Export Citation
  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31, L06304, https://doi.org/10.1029/2003GL019239.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2020: Understanding reintensified multiyear El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2021: Evolution of subtropical Pacific‐onset El Niño: How its onset location controls its decay evolution. Geophys. Res. Lett., 48, e2020GL091345, https://doi.org/10.1029/2020GL091345.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Climate Atmos. Sci., 5, 88, https://doi.org/10.1038/s41612-022-00305-y.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-F., C.-T. Terng, C.-R. Wu, and J.-Y. Yu, 2023: Seasonally-reversed trends in the subtropical northwestern Pacific linked to asymmetric AMO influences. Sci. Rep., 13, 13735, https://doi.org/10.1038/s41598-023-40979-9.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-S., L.-C. Wang, and J.-L. F. Li, 2023: Effects of equatorial ocean current bias on simulated El Niño pattern in CMIP6 models. Geophys. Res. Lett., 50, e2023GL102890, https://doi.org/10.1029/2023GL102890.

    • Search Google Scholar
    • Export Citation
  • Lyu, K., J.-Y. Yu, and H. Paek, 2017: The influences of the Atlantic multidecadal oscillation on the mean strength of the North Pacific subtropical high during boreal winter. J. Climate, 30, 411426, https://doi.org/10.1175/JCLI-D-16-0525.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., H.-J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S. P., M. A. Chandler, J. Jonas, L. E. Sohl, K. Mankoff, and H. Dowsett, 2009: Impact of a permanent El Niño (El Padre) and Indian Ocean dipole in warm Pliocene climates. Paleoceanography, 24, PA2221, https://doi.org/10.1029/2008PA001682.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2005: Mechanisms for lagged atmospheric response to ENSO SST forcing. J. Climate, 18, 41954215, https://doi.org/10.1175/JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-Z., and C. Wang, 2021: Joint boost to super El Niño from the Indian and Atlantic Oceans. J. Climate, 34, 49374954, https://doi.org/10.1175/JCLI-D-20-0710.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J.-Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Tan, and C. Wang, 2018: A new index for identifying different types of El Niño Modoki events. Climate Dyn., 50, 27532765, https://doi.org/10.1007/s00382-017-3769-8.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Guan, R. X. Huang, W. Tan, and L. Wang, 2019: The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Climate Dyn., 52, 65856597, https://doi.org/10.1007/s00382-018-4534-3.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, and P. N. DiNezio, 2019: What controls the duration of El Niño and La Niña events? J. Climate, 32, 59415965, https://doi.org/10.1175/JCLI-D-18-0681.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, and P. N. DiNezio, 2021: Predictability of El Niño duration based on the onset timing. J. Climate, 34, 13511366, https://doi.org/10.1175/JCLI-D-19-0963.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged‐discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 66116618, https://doi.org/10.1029/2018GL077664.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 28692884, https://doi.org/10.1175/2010JCLI3171.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for central-Pacific and eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337344, https://doi.org/10.1007/s00704-010-0307-6.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., M.-M. Lu, and S. T. Kim, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Chen, 2017: The changing El Niño–Southern Oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 1–38, https://doi.org/10.1002/9781119068020.ch1.

  • Zhang, G., X. Wang, Q. Xie, J. Chen, and S. Chen, 2022: Strengthening impacts of spring sea surface temperature in the north tropical Atlantic on Indian Ocean dipole after the mid-1980s. Climate Dyn., 59, 185200, https://doi.org/10.1007/s00382-021-06128-6.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., W. Chen, S. Chen, S. Yao, and C. Cheng, 2021: Asymmetric impact of the boreal spring Pacific meridional mode on the following winter El Niño‐Southern Oscillation. Int. J. Climatol., 41, 35233538, https://doi.org/10.1002/joc.7033.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and J.-Y. Yu, 2022: A shifting tripolar pattern of Antarctic sea ice concentration anomalies during multi‐year La Niña events. Geophys. Res. Lett., 49, e2022GL101217, https://doi.org/10.1029/2022GL101217.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 590 590 24
Full Text Views 280 280 16
PDF Downloads 357 357 20