Deciphering the Variations and Mechanisms of Global Land Monsoons during Marine Isotope Stage 3

Jinzhe Zhang aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jinzhe Zhang in
Current site
Google Scholar
PubMed
Close
,
Qing Yan aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bKey Laboratory of Meteorological Disaster, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Qing Yan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5299-7824
,
Nanxuan Jiang aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Nanxuan Jiang in
Current site
Google Scholar
PubMed
Close
, and
Chuncheng Guo cNORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Chuncheng Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Marine Isotope Stage 3 (MIS 3) is characterized by significant millennial-scale climatic oscillations between cold stadials and mild interstadials, which presents a valuable case for understanding hydrological response to abrupt climate change. Through a set of coupled model simulations, our results broadly show an antiphased interhemispheric change in land monsoonal precipitation during the present-day relative to MIS 3 interstadial and the stadial–interstadial transition, with a general decrease in the Northern Hemisphere but an increase in the Southern Hemisphere. The antiphased pattern is largely caused by the change in orbital insolation during the present-day relative to MIS 3 interstadial, whereas by the weakened Atlantic meridional overturning circulation during the interstadial–stadial transition. However, there are obvious discrepancies in precipitation response and underlying mechanisms among individual monsoon domains and across different periods. Based on the moisture budget analysis, we indicate that the dynamic factor mainly explains the decreased monsoonal rainfall in the Northern Hemisphere during the present-day relative to the MIS 3 interstadial, whereas the thermodynamic term is largely responsible for the increased precipitation in the Southern Hemisphere. In contrast, the dynamic factor plays an important role in the variation of precipitation over all the monsoon zones from the MIS 3 interstadial to stadial states, with the thermodynamic term mainly contributing to the decreased tropical monsoonal precipitation in the colder Northern Hemisphere. Our results help improve the understanding of global monsoon variations under intermediate glacial climate conditions and shed light on their behaviors under potentially rapid climate change in the future.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Abstract

Marine Isotope Stage 3 (MIS 3) is characterized by significant millennial-scale climatic oscillations between cold stadials and mild interstadials, which presents a valuable case for understanding hydrological response to abrupt climate change. Through a set of coupled model simulations, our results broadly show an antiphased interhemispheric change in land monsoonal precipitation during the present-day relative to MIS 3 interstadial and the stadial–interstadial transition, with a general decrease in the Northern Hemisphere but an increase in the Southern Hemisphere. The antiphased pattern is largely caused by the change in orbital insolation during the present-day relative to MIS 3 interstadial, whereas by the weakened Atlantic meridional overturning circulation during the interstadial–stadial transition. However, there are obvious discrepancies in precipitation response and underlying mechanisms among individual monsoon domains and across different periods. Based on the moisture budget analysis, we indicate that the dynamic factor mainly explains the decreased monsoonal rainfall in the Northern Hemisphere during the present-day relative to the MIS 3 interstadial, whereas the thermodynamic term is largely responsible for the increased precipitation in the Southern Hemisphere. In contrast, the dynamic factor plays an important role in the variation of precipitation over all the monsoon zones from the MIS 3 interstadial to stadial states, with the thermodynamic term mainly contributing to the decreased tropical monsoonal precipitation in the colder Northern Hemisphere. Our results help improve the understanding of global monsoon variations under intermediate glacial climate conditions and shed light on their behaviors under potentially rapid climate change in the future.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.6440 MB)
Save
  • Adegbie, A. T., R. R. Schneider, U. Röhl, and G. Wefer, 2003: Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 197, 323333, https://doi.org/10.1016/S0031-0182(03)00474-7.

    • Search Google Scholar
    • Export Citation
  • An, Z., and Coauthors, 2012: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep., 2, 619, https://doi.org/10.1038/srep00619.

    • Search Google Scholar
    • Export Citation
  • Arbuszewski, J. A., P. B. Demenocal, C. Cléroux, L. Bradtmiller, and A. Mix, 2013: Meridional shifts of the Atlantic intertropical convergence zone since the last glacial maximum. Nat. Geosci., 6, 959962, https://doi.org/10.1038/ngeo1961.

    • Search Google Scholar
    • Export Citation
  • Bae, C. J., K. Douka, and M. D. Petraglia, 2017: On the origin of modern humans: Asian perspectives. Science, 358, eaai9067, https://doi.org/10.1126/science.aai9067.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, https://doi.org/10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat. Res., 9, 139167, https://doi.org/10.1016/0033-5894(78)90064-9.

    • Search Google Scholar
    • Export Citation
  • Böhm, E., and Coauthors, 2015: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517, 7376, https://doi.org/10.1038/nature14059.

    • Search Google Scholar
    • Export Citation
  • Brandefelt, J., E. Kjellström, J.-O. Näslund, G. Strandberg, A. H. L. Voelker, and B. Wohlfarth, 2011: A coupled climate model simulation of Marine Isotope Stage 3 stadial climate. Climate Past, 7, 649670, https://doi.org/10.5194/cp-7-649-2011.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1994: Massive iceberg discharges as triggers for global climate change. Nature, 372, 421424, https://doi.org/10.1038/372421a0.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, https://doi.org/10.1038/315021a0.

    • Search Google Scholar
    • Export Citation
  • Brown, E. T., T. C. Johnson, C. A. Scholz, A. S. Cohen, and J. W. King, 2007: Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophys. Res. Lett., 34, L20702, https://doi.org/10.1029/2007GL031240.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., and Coauthors, 2015: Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. USA, 112, 29542959, https://doi.org/10.1073/pnas.1424035112.

    • Search Google Scholar
    • Export Citation
  • Cao, J., B. Wang, and L. Ma, 2019: Attribution of global monsoon response to the last glacial maximum forcings. J. Climate, 32, 65896605, https://doi.org/10.1175/JCLI-D-18-0871.1.

    • Search Google Scholar
    • Export Citation
  • Carolin, S. A., K. M. Cobb, J. F. Adkins, B. Clark, J. L. Conroy, S. Lejau, J. Malang, and A. A. Tuen, 2013: Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science, 340, 15641566, https://doi.org/10.1126/science.1233797.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., and Coauthors, 2013: Climate change patterns in Amazonia and biodiversity. Nat. Commun., 4, 1411, https://doi.org/10.1038/ncomms2415.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., and Coauthors, 2016: The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534, 640646, https://doi.org/10.1038/nature18591.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327341, https://doi.org/10.1007/s00382-003-0375-8.

    • Search Google Scholar
    • Export Citation
  • Corrick, E. C., and Coauthors, 2020: Synchronous timing of abrupt climate changes during the last glacial period. Science, 369, 963969, https://doi.org/10.1126/science.aay5538.

    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., J. Bader, S. Bordoni, D. Ferreira, and J. Jungclaus, 2019: Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett., 46, 15911601, https://doi.org/10.1029/2018GL081589.

    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., J. R. Brown, A. Moise, H. Nguyen, P. L. S. Dias, and J. Jungclaus, 2020: Contrasting southern hemisphere monsoon response: MidHolocene orbital forcing versus future greenhouse gas–induced global warming. J. Climate, 33, 95959613, https://doi.org/10.1175/JCLI-D-19-0672.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, K. A., A. J. Broccoli, and R. J. Stouffer, 2005: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dyn., 24, 325346, https://doi.org/10.1007/s00382-004-0499-5.

    • Search Google Scholar
    • Export Citation
  • Dannenmann, S., B. K. Linsley, D. W. Oppo, Y. Rosenthal, and L. Beaufort, 2003: East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3: Link to Northern Hemisphere climate. Geochem. Geophys. Geosyst., 4 (1), 113, https://doi.org/10.1029/2002GC000390.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Search Google Scholar
    • Export Citation
  • Denniston, R. F., and Coauthors, 2013: North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period. Quat. Sci. Rev., 72, 159168, https://doi.org/10.1016/j.quascirev.2013.04.012.

    • Search Google Scholar
    • Export Citation
  • Deplazes, G., and Coauthors, 2013: Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci., 6, 213217, https://doi.org/10.1038/ngeo1712.

    • Search Google Scholar
    • Export Citation
  • Ehrmann, W., G. Schmiedl, M. Seidel, S. Krüger, and H. Schulz, 2016: A distal 140 kyr sediment record of Nile discharge and East African monsoon variability. Climate Past, 12, 713727, https://doi.org/10.5194/cp-12-713-2016.

    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Search Google Scholar
    • Export Citation
  • EPICA Community Members, 2006: One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198, https://doi.org/10.1038/nature05301.

    • Search Google Scholar
    • Export Citation
  • Escobar, J., and Coauthors, 2012: A ∼43-ka record of paleoenvironmental change in the Central American lowlands inferred from stable isotopes of lacustrine ostracods. Quat. Sci. Rev., 37, 92104, https://doi.org/10.1016/j.quascirev.2012.01.020.

    • Search Google Scholar
    • Export Citation
  • Guo, C., M. Bentsen, I. Bethke, M. Ilicak, J. Tjiputra, T. Toniazzo, J. Schwinger, and O. H. Otterå, 2019a: Description and evaluation of NorESM1-F: A fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 12, 343362, https://doi.org/10.5194/gmd-12-343-2019.

    • Search Google Scholar
    • Export Citation
  • Guo, C., K. H. Nisancioglu, M. Bentsen, I. Bethke, and Z. Zhang, 2019b: Equilibrium simulations of Marine Isotope Stage 3 climate. Climate Past, 15, 11331151, https://doi.org/10.5194/cp-15-1133-2019.

    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., and Coauthors, 2020: The Pliocene Model Intercomparison Project Phase 2: Large-scale climate features and climate sensitivity. Climate Past, 16, 20952123, https://doi.org/10.5194/cp-16-2095-2020.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huber, C., and Coauthors, 2006: Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett., 243, 504519, https://doi.org/10.1016/j.epsl.2006.01.002.

    • Search Google Scholar
    • Export Citation
  • Jaglan, S., A. K. Gupta, S. C. Clemens, S. Dutt, H. Cheng, and R. K. Singh, 2021: Abrupt Indian summer monsoon shifts aligned with Heinrich events and D-O cycles since MIS 3. Palaeogeogr. Palaeoclimatol. Palaeoecol., 583, 110658, https://doi.org/10.1016/j.palaeo.2021.110658.

    • Search Google Scholar
    • Export Citation
  • Jansen, E., and Coauthors, 2020: Past perspectives on the present era of abrupt Arctic climate change. Nat. Climate Change, 10, 714721, https://doi.org/10.1038/s41558-020-0860-7.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., Z. Tian, and X. Lang, 2015: Mid-Holocene global monsoon area and precipitation from PMIP simulations. Climate Dyn., 44, 24932512, https://doi.org/10.1007/s00382-014-2175-8.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., Q. Yan, and H. Wang, 2022: General characteristics of climate change over China and associated dynamic mechanisms during the Last Interglacial based on PMIP4 simulations. Global Planet. Change, 208, 103700, https://doi.org/10.1016/j.gloplacha.2021.103700.

    • Search Google Scholar
    • Export Citation
  • Jin, L., F. Chen, A. Ganopolski, and M. Claussen, 2007: Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res., 112, D06117, https://doi.org/10.1029/2006JD007316.

    • Search Google Scholar
    • Export Citation
  • Kanner, L. C., S. J. Burns, H. Cheng, and R. L. Edwards, 2012: High-latitude forcing of the South American summer monsoon during the last glacial. Science, 335, 570573, https://doi.org/10.1126/science.1213397.

    • Search Google Scholar
    • Export Citation
  • Kathayat, G., and Coauthors, 2016: Indian monsoon variability on millennial-orbital timescales. Sci. Rep., 6, 24374, https://doi.org/10.1038/srep24374.

    • Search Google Scholar
    • Export Citation
  • Kindler, P., M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, and M. Leuenberger, 2014: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate Past, 10, 887902, https://doi.org/10.5194/cp-10-887-2014.

    • Search Google Scholar
    • Export Citation
  • Koch, P. L., and A. D. Barnosky, 2006: Late Quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst., 37, 215250, https://doi.org/10.1146/annurev.ecolsys.34.011802.132415.

    • Search Google Scholar
    • Export Citation
  • Lachniet, M. S., L. Johnson, Y. Asmerom, S. J. Burns, V. Polyak, W. P. Patterson, L. Burt, and A. Azouz, 2009: Late quaternary moisture export across Central America and to Greenland: Evidence for tropical rainfall variability from Costa Rican stalagmites. Quat. Sci. Rev., 28, 33483360, https://doi.org/10.1016/j.quascirev.2009.09.018.

    • Search Google Scholar
    • Export Citation
  • Li, X., and M. Ting, 2017: Understanding the Asian summer monsoon response to greenhouse warming: The relative roles of direct radiative forcing and sea surface temperature change. Climate Dyn., 49, 28632880, https://doi.org/10.1007/s00382-016-3470-3.

    • Search Google Scholar
    • Export Citation
  • Lin, D.-C., M.-T. Chen, M. Yamamoto, and Y. Yokoyama, 2017: Hydrographic variability in the northern South China Sea over the past 45,000 years: New insights based on temperature reconstructions by Uk’ 37 and TEXH 86 proxies from a marine sediment core (MD972146). Quat. Int., 459, 116, https://doi.org/10.1016/j.quaint.2017.09.029.

    • Search Google Scholar
    • Export Citation
  • Lin, R., T. Zhou, and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 12711289, https://doi.org/10.1175/JCLI-D-13-00215.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, Q. Ding, X. Kuang, W. Soon, and E. Zorita, 2009: Centennial variations of the global monsoon precipitation in the last millennium: Results from ECHO-G model. J. Climate, 22, 23562371, https://doi.org/10.1175/2008JCLI2353.1.

    • Search Google Scholar
    • Export Citation
  • Lorenzen, E. D., and Coauthors, 2011: Species-specific responses of late quaternary megafauna to climate and humans. Nature, 479, 359364, https://doi.org/10.1038/nature10574.

    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and Coauthors, 2021: DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate Past, 17, 203227, https://doi.org/10.5194/cp-17-203-2021.

    • Search Google Scholar
    • Export Citation
  • Malmierca-Vallet, I., and Coauthors, 2023: Dansgaard–Oeschger events in climate models: Review and baseline Marine Isotope Stage 3 (MIS3) protocol. Climate Past, 19, 915942, https://doi.org/10.5194/cp-19-915-2023.

    • Search Google Scholar
    • Export Citation
  • Martínez-Abarca, R., and Coauthors, 2023: Millennial hydrological variability in the continental northern Neotropics during Marine Isotope Stages (MISs)3–2 (59–15 cal ka BP) inferred from sediments of Lake Petén Itzá, Guatemala. Climate Past, 19, 14091434, https://doi.org/10.5194/cp-19-1409-2023.

    • Search Google Scholar
    • Export Citation
  • Mellars, P., 2006: Going east: New genetic and archaeological perspectives on the modern human colonization of Eurasia. Science, 313, 796800, https://doi.org/10.1126/science.1128402.

    • Search Google Scholar
    • Export Citation
  • Mohtadi, M., M. Prange, D. W. Oppo, R. De Pol-Holz, U. Merkel, X. Zhang, S. Steinke, and A. Lückge, 2014: North Atlantic forcing of tropical Indian Ocean climate. Nature, 509, 7680, https://doi.org/10.1038/nature13196.

    • Search Google Scholar
    • Export Citation
  • Mulitza, S., and Coauthors, 2008: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanogr. Paleoclimatol., 23, PA4206, https://doi.org/10.1029/2008PA001637.

    • Search Google Scholar
    • Export Citation
  • Oppenheimer, S., 2009: The great arc of dispersal of modern humans: Africa to Australia. Quat. Int., 202, 213, https://doi.org/10.1016/j.quaint.2008.05.015.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2021: Large-scale features of last interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Climate Past, 17, 6394, https://doi.org/10.5194/cp-17-63-2021.

    • Search Google Scholar
    • Export Citation
  • Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Rohl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290, 19471951, https://doi.org/10.1126/science.290.5498.1947.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, https://doi.org/10.1038/nature01090.

    • Search Google Scholar
    • Export Citation
  • Schilt, A., and Coauthors, 2010: Atmospheric nitrous oxide during the last 140,000 years. Earth Planet. Sci. Lett., 300, 3343, https://doi.org/10.1016/j.epsl.2010.09.027.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Schulz, H., U. von Rad, H. Erlenkeuser, and U. von Rad, 1998: Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature, 393, 5457, https://doi.org/10.1038/31750.

    • Search Google Scholar
    • Export Citation
  • Scroxton, N., and Coauthors, 2022: Antiphase response of the Indonesian–Australian monsoon to millennial-scale events of the last glacial period. Sci. Rep., 12, 20214, https://doi.org/10.1038/s41598-022-21843-8.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Simon, M. H., M. Ziegler, J. Bosmans, S. Barker, C. J. C. Reason, and I. R. Hall, 2015: Eastern South African hydroclimate over the past 270,000 years. Sci. Rep., 5, 18153, https://doi.org/10.1038/srep18153.

    • Search Google Scholar
    • Export Citation
  • Stríkis, N. M., and Coauthors, 2018: South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl. Acad. Sci. USA, 115, 37883793, https://doi.org/10.1073/pnas.1717784115.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2019: Diverse manifestations of the mid-Pleistocene climate transition. Nat. Commun., 10, 352, https://doi.org/10.1038/s41467-018-08257-9.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2021: The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the last glacial maximum: A data-model comparison. Climate Dyn., 56, 13031316, https://doi.org/10.1007/s00382-020-05533-7.

    • Search Google Scholar
    • Export Citation
  • Tarasov, L., A. S. Dyke, R. M. Neal, and W. R. Peltier, 2012: A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett., 315, 3040, https://doi.org/10.1016/j.epsl.2011.09.010.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Meerbeeck, C. J., H. Renssen, and D. M. Roche, 2009: How did Marine Isotope Stage 3 and last glacial maximum climates differ? – Perspectives from equilibrium simulations. Climate Past, 5, 3351, https://doi.org/10.5194/cp-5-33-2009.

    • Search Google Scholar
    • Export Citation
  • Verma, K., H. Singh, A. D. Singh, P. Singh, R. K. Satpathy, and P. D. Naidu, 2021: Benthic foraminiferal response to the millennial-scale variations in monsoon-driven productivity and deep-water oxygenation in the western Bay of Bengal during the last 45 ka. Front. Mar. Sci., 8, 733365, https://doi.org/10.3389/fmars.2021.733365.

    • Search Google Scholar
    • Export Citation
  • Voelker, A. H. L., and Coauthors, 2002: Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: A database. Quat. Sci. Rev., 21, 11851212, https://doi.org/10.1016/S0277-3791(01)00139-1.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., L. Labeyrie, E. Michel, J. C. Duplessy, J. F. Mcmanus, K. Lambeck, E. Balbon, and M. Labracherie, 2002: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev., 21, 295305, https://doi.org/10.1016/S0277-3791(01)00101-9.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, https://doi.org/10.1029/2005GL025347.

    • Search Google Scholar
    • Export Citation
  • Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, P. S. Cristalli, P. L. Smart, D. A. Richards, and C.-C. Shen, 2004: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432, 740743, https://doi.org/10.1038/nature03067.

    • Search Google Scholar
    • Export Citation
  • Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, E. Ito, Y. Wang, X. Kong, and M. Solheid, 2007: Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett., 34, L23701, https://doi.org/10.1029/2007GL031149.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2008: Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451, 10901093, https://doi.org/10.1038/nature06692.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. He, T. Li, C. Zhang, and X. Gu, 2023: Distinctive changes of Asian–African summer monsoon in interglacial epochs and global warming scenario. Climate Dyn., 62, 21292145, https://doi.org/10.1007/s00382-023-07013-0.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, https://doi.org/10.1126/science.1064618.

    • Search Google Scholar
    • Export Citation
  • Warken, S. F., and Coauthors, 2020: Persistent link between Caribbean precipitation and Atlantic Ocean circulation during the Last Glacial revealed by a speleothem record from Puerto Rico. Paleoceanogr. Paleoclimatol., 35, e2020PA003944, https://doi.org/10.1029/2020PA003944.

    • Search Google Scholar
    • Export Citation
  • Weldeab, S., 2012: Bipolar modulation of millennial-scale West African monsoon variability during the last glacial (75,000–25,000 years ago). Quat. Sci. Rev., 40, 2129, https://doi.org/10.1016/j.quascirev.2012.02.014.

    • Search Google Scholar
    • Export Citation
  • Weldeab, S., D. W. Lea, R. R. Schneider, and N. Andersen, 2007: 155,000 years of West African monsoon and ocean thermal evolution. Science, 316, 13031307, https://doi.org/10.1126/science.1140461.

    • Search Google Scholar
    • Export Citation
  • Wolff, E. W., J. Chappellaz, T. Blunier, S. O. Rasmussen, and A. Svensson, 2010: Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev., 29, 28282838, https://doi.org/10.1016/j.quascirev.2009.10.013.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Coauthors, 2020: Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China. Quat. Sci. Rev., 234, 106261, https://doi.org/10.1016/j.quascirev.2020.106261.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., Z. Hou, Y. Han, and W. Guo, 2016: A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geosci. Model Dev., 9, 43654380, https://doi.org/10.5194/gmd-9-4365-2016.

    • Search Google Scholar
    • Export Citation
  • Yan, M., B. Wang, and J. Liu, 2016: Global monsoon change during the Last Glacial Maximum: A multi-model study. Climate Dyn., 47, 359374, https://doi.org/10.1007/s00382-015-2841-5.

    • Search Google Scholar
    • Export Citation
  • Yan, Q., L. A. Owen, C. Guo, Z. Zhang, J. Zhang, and H. Wang, 2023: Widespread glacier advances across the Tian Shan during Marine Isotope Stage 3 not supported by climate-glaciation simulations. Fundam. Res., 3, 102110, https://doi.org/10.1016/j.fmre.2022.01.033.

    • Search Google Scholar
    • Export Citation
  • Yu, G., Y. Zheng, and X. Ke, 2005: 35 ka BP climate simulations in East Asia and probing the mechanisms of climate changes. Chin. Sci. Bull., 50, 5867, https://doi.org/10.1360/03WD0604.

    • Search Google Scholar
    • Export Citation
  • Yu, L., Y. Gao, H. Wang, D. Guo, and S. Li, 2009: The responses of East Asian Summer monsoon to the North Atlantic meridional overturning circulation in an enhanced freshwater input simulation. Chin. Sci. Bull., 54, 47244732, https://doi.org/10.1007/s11434-009-0720-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, 33, https://doi.org/10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., D. Jiang, Z. Zhang, Q. Yan, and X. Li, 2019: Modeling the late Pliocene global monsoon response to individual boundary conditions. Climate Dyn., 53, 48714886, https://doi.org/10.1007/s00382-019-04834-w.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. Prange, 2020: Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev., 242, 106443, https://doi.org/10.1016/j.quascirev.2020.106443.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014a: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, https://doi.org/10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Prange, U. Merkel, and M. Schulz, 2014b: Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett., 41, 42854293, https://doi.org/10.1002/2014GL060321.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Knorr, G. Lohmann, and S. Barker, 2017: Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nat. Geosci., 10, 518523, https://doi.org/10.1038/ngeo2974.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Barker, G. Knorr, G. Lohmann, R. Drysdale, Y. Sun, D. Hodell, and F. Chen, 2021: Direct astronomical influence on abrupt climate variability. Nat. Geosci., 14, 819826, https://doi.org/10.1038/s41561-021-00846-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Prange, L. Ma, and J. Liu, 2023: Nonlinear response of global monsoon precipitation to Atlantic overturning strength variations during Marine Isotope Stage 3. J. Geophys. Res. Atmos., 128, e2023JD038521, https://doi.org/10.1029/2023JD038521.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z. S., and Coauthors, 2012: Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev., 5, 523533, https://doi.org/10.5194/gmd-5-523-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., G. Li, Y. Cai, Z. Liu, and Z. An, 2021: Variation of summer precipitation δ18O on the Chinese Loess Plateau since the last interglacial. J. Quat. Sci., 36, 12141220, https://doi.org/10.1002/jqs.3358.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2023: Atmospheric and oceanic circulation altered by global mean sea-level rise. Nat. Geosci., 16, 321327, https://doi.org/10.1038/s41561-023-01153-y.

    • Search Google Scholar
    • Export Citation
  • Zhao, K., Y. Wang, R. L. Edwards, H. Cheng, and D. Liu, 2010: High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth Planet. Sci. Lett., 298, 191198, https://doi.org/10.1016/j.epsl.2010.07.041.

    • Search Google Scholar
    • Export Citation
  • Zhong, W., J. Xue, J. Ouyang, Y. Zheng, Q. Ma, and X. Yu, 2010: Last glacial climate variation