Detection and Attribution of Changes in Precipitation Extremes in China and Its Different Climate Zones

Wenhui Chen aKey Laboratory of Land Surface Patterns and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenhui Chen in
Current site
Google Scholar
PubMed
Close
,
Huijuan Cui aKey Laboratory of Land Surface Patterns and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Huijuan Cui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0308-1550
,
Francis W. Zwiers cPacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
dKey Laboratory of Meteorological Disaster, Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Francis W. Zwiers in
Current site
Google Scholar
PubMed
Close
,
Chao Li eKey Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
fSchool of Geographic Sciences, East China Normal University, Shanghai, China

Search for other papers by Chao Li in
Current site
Google Scholar
PubMed
Close
, and
Jingyun Zheng aKey Laboratory of Land Surface Patterns and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jingyun Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the observations and the phase 6 of Coupled Model Intercomparison Project (CMIP6) multimodel simulations, we conducted a detection and attribution analysis for the observed changes in intensity and frequency indices of extreme precipitation during 1961–2014 over the whole of China and within distinct climate regions across the country. A space–time analysis is simultaneously applied in detection so that spatial structure on the signals is considered. Results show that the CMIP6 models can simulate the observed general increases of extreme precipitation indices during the historical period except for the drying trends from southwestern to northeastern China. The anthropogenic (ANT) signal is detectable and attributable to the observed increase of extreme precipitation over China, with human-induced greenhouse gas (GHG) increases being the dominant contributor. Additionally, we also detected the ANT and GHG signals in China’s temperate continental, subtropical–tropical monsoon, and plateau mountain climate zones, demonstrating the role of human activity in historical extreme precipitation changes on much smaller spatial scales.

Significance Statement

The observed intensification of extreme precipitation globally has been attributed to human influences. Here, we demonstrate that anthropogenic forcing has discernably intensified extreme precipitation over the period 1961–2014, over China and in three of its four climate zones, with human-induced greenhouse gas increases being the dominant contributor. Our results strengthen the body of evidence that greenhouse gas increases are intensifying extreme precipitation by quantifying their role in observed changes at smaller regional scales than previously reported.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijuan Cui, cuihj@igsnrr.ac.cn

Abstract

Based on the observations and the phase 6 of Coupled Model Intercomparison Project (CMIP6) multimodel simulations, we conducted a detection and attribution analysis for the observed changes in intensity and frequency indices of extreme precipitation during 1961–2014 over the whole of China and within distinct climate regions across the country. A space–time analysis is simultaneously applied in detection so that spatial structure on the signals is considered. Results show that the CMIP6 models can simulate the observed general increases of extreme precipitation indices during the historical period except for the drying trends from southwestern to northeastern China. The anthropogenic (ANT) signal is detectable and attributable to the observed increase of extreme precipitation over China, with human-induced greenhouse gas (GHG) increases being the dominant contributor. Additionally, we also detected the ANT and GHG signals in China’s temperate continental, subtropical–tropical monsoon, and plateau mountain climate zones, demonstrating the role of human activity in historical extreme precipitation changes on much smaller spatial scales.

Significance Statement

The observed intensification of extreme precipitation globally has been attributed to human influences. Here, we demonstrate that anthropogenic forcing has discernably intensified extreme precipitation over the period 1961–2014, over China and in three of its four climate zones, with human-induced greenhouse gas increases being the dominant contributor. Our results strengthen the body of evidence that greenhouse gas increases are intensifying extreme precipitation by quantifying their role in observed changes at smaller regional scales than previously reported.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijuan Cui, cuihj@igsnrr.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.4888 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477491, https://doi.org/10.1007/s00382-003-0313-9.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter10_FINAL.pdf.

  • Chen, H., and J. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 24362444, https://doi.org/10.1002/2016GL072439.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2021: Anthropogenic influence has increased climate extreme occurrence over China. Sci. Bull., 66, 749752, https://doi.org/10.1016/j.scib.2020.12.001.

    • Search Google Scholar
    • Export Citation
  • Chen, I. J., J.-P. Chen, and I. C. Tsai, 2016: Dynamic feedback of aerosol effects on the East Asian summer monsoon. J. Climate, 29, 61376149, https://doi.org/10.1175/JCLI-D-15-0758.1.

    • Search Google Scholar
    • Export Citation
  • Chen, W., H. Cui, and Q. Ge, 2021: The spatial and seasonal dependency of daily precipitation extremes on the temperature in China from 1957 to 2017. Int. J. Climatol., 42, 15601575, https://doi.org/10.1002/joc.7320.

    • Search Google Scholar
    • Export Citation
  • Chen, W., H. Cui, and J. Zheng, 2024: Prediction of Clausius–Clapeyron scaling of daily precipitation extremes over China. J. Climate, 37, 165177, https://doi.org/10.1175/JCLI-D-23-0030.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., L. Trenary, X. Yan, and M. K. Tippett, 2019: Confidence intervals in optimal fingerprinting. Climate Dyn., 52, 41114126, https://doi.org/10.1007/s00382-018-4356-3.

    • Search Google Scholar
    • Export Citation
  • Ding, Z., P. Zhai, and R. Wu, 2024: Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau. Climatic Change, 177, 12, https://doi.org/10.1007/s10584-023-03670-6.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Search Google Scholar
    • Export Citation
  • Dong, B., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Climate Dyn., 53, 32353256, https://doi.org/10.1007/s00382-019-04698-0.

    • Search Google Scholar
    • Export Citation
  • Dong, S., Y. Sun, and C. Li, 2020: Detection of human influence on precipitation extremes in Asia. J. Climate, 33, 52935304, https://doi.org/10.1175/JCLI-D-19-0371.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., Y. Sun, C. Li, X. Zhang, S.-K. Min, and Y.-H. Kim, 2021: Attribution of extreme precipitation with updated observations and CMIP6 simulations. J. Climate, 34, 871881, https://doi.org/10.1175/JCLI-D-19-1017.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., Y. Sun, and X. Zhang, 2022: Attributing observed increase in extreme precipitation in China to human influence. Environ. Res. Lett., 17, 095005, https://doi.org/10.1088/1748-9326/ac888e.

    • Search Google Scholar
    • Export Citation
  • Dong, T., X. Zhu, R. Deng, Y. Ma, and W. Dong, 2022: Detection and attribution of extreme precipitation events over the Asian monsoon region. Wea. Climate Extremes, 38, 100497, https://doi.org/10.1016/j.wace.2022.100497.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Search Google Scholar
    • Export Citation
  • Gao, T., H. J. Wang, and T. Zhou, 2017: Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res., 197, 379389, https://doi.org/10.1016/j.atmosres.2017.07.017.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2016: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev., 9, 36853697, https://doi.org/10.5194/gmd-9-3685-2016.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., B. Dong, and J. Zhu, 2022: Anthropogenic impacts on changes in summer extreme precipitation over China during 1961–2014: Roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 60, 26332643, https://doi.org/10.1007/s00382-022-06453-4.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-H. Kim, S.-K. Min, D. Kim, T. Li, A. Timmermann, and M. F. Stuecker, 2023: Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature, 622, 301307, https://doi.org/10.1038/s41586-023-06474-x.

    • Search Google Scholar
    • Export Citation
  • Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, https://doi.org/10.1029/2010GL045081.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G., and F. Zwiers, 2011: Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev.: Climate Change, 2, 570591, https://doi.org/10.1002/wcc.121.

    • Search Google Scholar
    • Export Citation
  • Hu, T., Y. Sun, X. Zhang, S.-K. Min, and Y.-H. Kim, 2020: Human influence on frequency of temperature extremes. Environ. Res. Lett., 15, 064014, https://doi.org/10.1088/1748-9326/ab8497.

    • Search Google Scholar
    • Export Citation
  • Huang, Z., X. Tan, T. Y. Gan, B. Liu, and X. Chen, 2023: Thermodynamically enhanced precipitation extremes due to counterbalancing influences of anthropogenic greenhouse gases and aerosols. Nat. Water, 1, 614625, https://doi.org/10.1038/s44221-023-00107-3.

    • Search Google Scholar
    • Export Citation
  • Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., and Coauthors, 2023: Reducing aerosol forcing uncertainty by combining models with satellite and within‐the‐atmosphere observations: A three‐way street. Rev. Geophys., 61, e2022RG000796, https://doi.org/10.1029/2022RG000796.

    • Search Google Scholar
    • Export Citation
  • Kao, S.-C., and A. R. Ganguly, 2011: Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J. Geophys. Res., 116, D16119, https://doi.org/10.1029/2010JD015529.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and Q. Wu, 2005: Detection of regional surface temperature trends. J. Climate, 18, 43374343, https://doi.org/10.1175/JCLI3565.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Search Google Scholar
    • Export Citation
  • Lee, L. A., C. L. Reddington, and K. S. Carslaw, 2016: On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc. Natl. Acad. Sci. USA, 113, 58205827, https://doi.org/10.1073/pnas.1507050113.

    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2019: Larger increases in more extreme local precipitation events as climate warms. Geophys. Res. Lett., 46, 68856891, https://doi.org/10.1029/2019GL082908.

    • Search Google Scholar
    • Export Citation
  • Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner, 2021: Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Climate, 34, 34413460, https://doi.org/10.1175/JCLI-D-19-1013.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, and H. Wang, 2017: Effects of anthropogenic activity emerging as intensified extreme precipitation over China. J. Geophys. Res. Atmos., 122, 68996914, https://doi.org/10.1002/2016JD026251.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Li, Z. Jiang, X. Zhang, and F. W. Zwiers, 2022: Deciphering China’s complex pattern of summer precipitation trends. Earth’s Future, 10, e2022EF002797, https://doi.org/10.1029/2022EF002797.

    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Jiang, X. Zhang, and L. Li, 2018: On the emergence of anthropogenic signal in extreme precipitation change over China. Geophys. Res. Lett., 45, 91799185, https://doi.org/10.1029/2018GL079133.

    • Search Google Scholar
    • Export Citation
  • Liang, L., M. Chen, and D. Huang, 2022: Spatiotemporal change and non-stationarity of air temperature in China from 1959 to 2018. Sustainable Cities Soc., 87, 104227, https://doi.org/10.1016/j.scs.2022.104227.

    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, P. Friederichs, and A. Hense, 2009: Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dyn., 32, 95111, https://doi.org/10.1007/s00382-008-0376-8.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Newton, B., D. Sayanda, and B. Bonsal, 2024: Thermodynamic and dynamic components of winter temperature changes in western Canada, 1950–2020. J. Climate, 37, 719734, https://doi.org/10.1175/JCLI-D-23-0138.1.

    • Search Google Scholar
    • Export Citation
  • NMIC, 2018: Dataset of gridded daily precipitation in China (version 2.0) (1961–2013). A Big Earth Data Platform for Three Poles, https://poles.tpdc.ac.cn/en/data/653191c3-df99-479b-95bd-a18bee30f2bd/.

  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Paik, S., S.-K. Min, X. Zhang, M. G. Donat, A. D. King, and Q. Sun, 2020: Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett., 47, e2019GL086875, https://doi.org/10.1029/2019GL086875.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 60236029, https://doi.org/10.1002/2014GL060811.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part II: Application to global near-surface temperature. Climate Dyn., 41, 28372853, https://doi.org/10.1007/s00382-013-1736-6.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, https://doi.org/10.1007/s00382-013-1735-7.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., N. P. Gillett, and F. W. Zwiers, 2015: Designing detection and attribution simulations for CMIP6 to optimize the estimation of greenhouse gas–induced warming. J. Climate, 28, 34353438, https://doi.org/10.1175/JCLI-D-14-00691.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513–1766, https://doi.org/10.1017/9781009157896.013.

  • Shi, Z., G. Jia, Y. Hu, and Y. Zhou, 2019: The contribution of intensified urbanization effects on surface warming trends in China. Theor. Appl. Climatol., 138, 11251137, https://doi.org/10.1007/s00704-019-02892-y.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., X. Zhang, F. Zwiers, S. Westra, and L. V. Alexander, 2021: A global, continental, and regional analysis of changes in extreme precipitation. J. Climate, 34, 243258, https://doi.org/10.1175/JCLI-D-19-0892.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., F. Zwiers, X. Zhang, and J. Yan, 2022: Quantifying the human influence on the intensity of extreme 1- and 5-day precipitation amounts at global, continental, and regional scales. J. Climate, 35, 195210, https://doi.org/10.1175/JCLI-D-21-0028.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, Y. Ding, D. Chen, D. Qin, and P. Zhai, 2022: Understanding human influence on climate change in China. Natl. Sci. Rev., 9, nwab113, https://doi.org/10.1093/nsr/nwab113.

    • Search Google Scholar
    • Export Citation
  • Szopa, S., and Coauthors, 2021: Short-lived climate forcers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 817–922, https://doi.org/10.1017/9781009157896.008.

  • Wang, J., and Coauthors, 2021: On the optimal design of field significance tests for changes in climate extremes. Geophys. Res. Lett., 48, e2021GL092831, https://doi.org/10.1029/2021GL092831.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., L. Lin, M. Yang, Y. Xu, and J. Li, 2017: Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmos. Chem. Phys., 17, 11 07511 088, https://doi.org/10.5194/acp-17-11075-2017.

    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Chen, and H. Wang, 2022: Detectable human influence on changes in precipitation extremes across China. Earth’s Future, 10, e2021EF002409, https://doi.org/10.1029/2021EF002409.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and Coauthors, 2018: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dyn., 50, 25132536, https://doi.org/10.1007/s00382-017-3755-1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Du, J. Tang, and Y. Wang, 2011: Variations of temperature and precipitation extremes in recent two decades over China. Atmos. Res., 101, 143154, https://doi.org/10.1016/j.atmosres.2011.02.003.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y. Luo, C. Wu, H. Zheng, L. Zhang, Y. Cui, N. Sun, and L. Wang, 2019: Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China. Agric. Water Manage., 222, 386399, https://doi.org/10.1016/j.agwat.2019.06.014.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 23992417, https://doi.org/10.1007/s00382-009-0735-0.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2021: Warming amplification over the Arctic pole and third pole: Trends, mechanisms and consequences. Earth Sci. Rev., 217, 103625, https://doi.org/10.1016/j.earscirev.2021.103625.

    • Search Google Scholar
    • Export Citation
  • You, Y., and M. Ting, 2021: Low pressure systems and extreme precipitation in southeast and East Asian monsoon regions. J. Climate, 34, 11471162, https://doi.org/10.1175/JCLI-D-20-0206.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Wu, and T. Zhou, 2017: Aerosol forcing of extreme summer drought over North China. Environ. Res. Lett., 12, 034020, https://doi.org/10.1088/1748-9326/aa5fb3.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., R. Shi, K. Fraedrich, and X. Zhu, 2022: Enhanced joint effects of ENSO and IOD on Southeast China winter precipitation after 1980s. Climate Dyn., 58, 277292, https://doi.org/10.1007/s00382-021-05907-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 52525257, https://doi.org/10.1002/grl.51010.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 10511066, https://doi.org/10.1002/joc.4400.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 798 798 467
Full Text Views 144 144 84
PDF Downloads 178 178 105