Advanced Peak Phase of ENSO under Global Warming

Xiao-Tong Zheng aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Xiao-Tong Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6335-1383
,
Chang Hui aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Chang Hui in
Current site
Google Scholar
PubMed
Close
,
Zi-Wen Han aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Zi-Wen Han in
Current site
Google Scholar
PubMed
Close
, and
Yue Wu bLaoshan Laboratory, Qingdao, China
cCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
dCollege of Marine Science, University of Chinese Academy of Sciences, Qingdao, China

Search for other papers by Yue Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of interannual ocean–atmosphere coupling in the tropical Pacific, greatly influencing the global climate system. Seasonal phase locking, which means that ENSO events usually peak in boreal winter, is a distinctive feature of ENSO. In model future projections, the ENSO sea surface temperature (SST) amplitude in winter shows no significant change with a large intermodel spread. However, whether and how ENSO phase locking will respond to global warming are not fully understood. In this study, using Community Earth System Model Large Ensemble (CESM-LE) projections, we found that the seasonality of ENSO events, especially its peak phase, has advanced under global warming. This phenomenon corresponds to the seasonal difference in the changes in the ENSO SST amplitude with an enhanced (weakened) amplitude from boreal summer to autumn (winter). Mixed layer ocean heat budget analysis revealed that the advanced ENSO seasonality is due to intensified positive meridional advective and thermocline feedback during the ENSO developing phase and intensified negative thermal damping during the ENSO peak phase. Furthermore, the seasonal variation in the mean El Niño–like SST warming in the tropical Pacific favors a weakened zonal advective feedback in boreal autumn–winter and earlier decay of ENSO. The advance of the ENSO peak phase is also found in most CMIP5/6 models that simulate the seasonal phase locking of ENSO well in the present climate. Thus, even though the amplitude response in the winter shows no model consensus, ENSO also significantly changes during different stages under global warming.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Tong Zheng, zhengxt@ouc.edu.cn

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of interannual ocean–atmosphere coupling in the tropical Pacific, greatly influencing the global climate system. Seasonal phase locking, which means that ENSO events usually peak in boreal winter, is a distinctive feature of ENSO. In model future projections, the ENSO sea surface temperature (SST) amplitude in winter shows no significant change with a large intermodel spread. However, whether and how ENSO phase locking will respond to global warming are not fully understood. In this study, using Community Earth System Model Large Ensemble (CESM-LE) projections, we found that the seasonality of ENSO events, especially its peak phase, has advanced under global warming. This phenomenon corresponds to the seasonal difference in the changes in the ENSO SST amplitude with an enhanced (weakened) amplitude from boreal summer to autumn (winter). Mixed layer ocean heat budget analysis revealed that the advanced ENSO seasonality is due to intensified positive meridional advective and thermocline feedback during the ENSO developing phase and intensified negative thermal damping during the ENSO peak phase. Furthermore, the seasonal variation in the mean El Niño–like SST warming in the tropical Pacific favors a weakened zonal advective feedback in boreal autumn–winter and earlier decay of ENSO. The advance of the ENSO peak phase is also found in most CMIP5/6 models that simulate the seasonal phase locking of ENSO well in the present climate. Thus, even though the amplitude response in the winter shows no model consensus, ENSO also significantly changes during different stages under global warming.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Tong Zheng, zhengxt@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.9932 MB)
Save
  • An, S. I., and F. F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, T. Geng, L. Wu, A. Santoso, and M. J. McPhaden, 2020: Butterfly effect and a self-modulating El Niño response to global warming. Nature, 585, 6873, https://doi.org/10.1038/s41586-020-2641-x.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, G. Wang, A. Santoso, L. Wu, and K. Yang, 2022: Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Climate Change, 12, 228231, https://doi.org/10.1038/s41558-022-01282-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2023: Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ., 4, 407418, https://doi.org/10.1038/s43017-023-00427-8.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., and F.-F. Jin, 2020: Fundamental behavior of ENSO phase locking. J. Climate, 33, 19531968, https://doi.org/10.1175/JCLI-D-19-0264.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., and F.-F. Jin, 2021: Simulations of ENSO phase-locking in CMIP5 and CMIP6. J. Climate, 34, 51355149, https://doi.org/10.1175/JCLI-D-20-0874.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., and F.-F. Jin, 2022: Dynamics of ENSO phase-locking and its biases in climate models. Geophys. Res. Lett., 49, e2021GL097603, https://doi.org/10.1029/2021GL097603.

    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, https://doi.org/10.1175/JCLI-D-14-00439.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and Y. Yu, 2016: The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Climate Dyn., 47, 36613672, https://doi.org/10.1007/s00382-016-3034-6.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. MIT DSpace Rep., 10 pp., http://hdl.handle.net/1721.1/110380.

  • Galanti, E., and E. Tziperman, 2000: ENSO’s phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57, 29362950, https://doi.org/10.1175/1520-0469(2000)057<2936:ESPLTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., E. Tziperman, M. Harrison, A. Rosati, R. Giering, and Z. Sirkes, 2002: The equatorial thermocline outcropping—A seasonal control on the tropical Pacific Ocean–atmosphere instability strength. J. Climate, 15, 27212739, https://doi.org/10.1175/1520-0442(2002)015<2721:TETOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2014: ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dyn., 43, 305318, https://doi.org/10.1007/s00382-014-2064-1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, D. Kim, Y.-H. Kim, and D.-H. Kim, 2013: What controls phase-locking of ENSO to boreal winter in coupled GCMs? Climate Dyn., 40, 15511568, https://doi.org/10.1007/s00382-012-1420-2.

    • Search Google Scholar
    • Export Citation
  • Heede, U. K., and A. V. Fedorov, 2023: Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Climate Dyn., 61, 30473060, https://doi.org/10.1007/s00382-023-06856-x.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., D. Chen, and J. Ying, 2017: Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Climate, 30, 81498158, https://doi.org/10.1175/JCLI-D-17-0171.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., X.-T. Zheng, X. Li, K. Hu, and Z.-Q. Zhou, 2023: More complex interactions: Continuing progress in understanding the dynamics of regional climate change under a warming climate. Innovation, 4, 100398, https://doi.org/10.1016/j.xinn.2023.100398.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, S., and Coauthors, 2020: The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Climate Change, 10, 3034, https://doi.org/10.1038/s41558-019-0663-x.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887, https://doi.org/10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, https://doi.org/10.1029/2002GL015789.

    • Search Google Scholar
    • Export Citation
  • Liao, H., C. Wang, and Z. Song, 2021: ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep-Sea Res. II, 189–190, 104943, https://doi.org/10.1016/j.dsr2.2021.104943.

    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. W. Branstator, and W. M. Washington, 1993: Tropical Pacific interannual variability and CO2 climate change. J. Climate, 6, 4263, https://doi.org/10.1175/1520-0442(1993)006<0042:TPIVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, T. Cowan, and D. Bi, 2021: Impacts of low-frequency internal climate variability and greenhouse warming on El Niño–Southern Oscillation. J. Climate, 34, 22052218, https://doi.org/10.1175/JCLI-D-20-0232.1.

    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, R. X. Huang, G. Chen, Y. Shu, J.-R. Shi, and W. Liu, 2022: Surface warming–induced global acceleration of upper ocean currents. Sci. Adv., 8, eabj8394, https://doi.org/10.1126/sciadv.abj8394.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, https://doi.org/10.1038/302295a0.

  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604613, https://doi.org/10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, https://doi.org/10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stein, K., N. Schneider, A. Timmermann, and F.-F. Jin, 2010: Seasonal synchronization of ENSO events in a linear stochastic model. J. Climate, 23, 56295643, https://doi.org/10.1175/2010JCLI3292.1.

    • Search Google Scholar
    • Export Citation
  • Stein, K., A. Timmermann, N. Schneider, F.-F. Jin, and M. F. Stuecker, 2014: ENSO seasonal synchronization theory. J. Climate, 27, 52855310, https://doi.org/10.1175/JCLI-D-13-00525.1.

    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, https://doi.org/10.1038/19505.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F.-F. Jin, and M. Collins, 2004: Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophys. Res. Lett., 31, L12208, https://doi.org/10.1029/2004GL019442.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal – ENSO interaction. J. Atmos. Sci., 54, 6171, https://doi.org/10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Luo, J. Lu, and F. Liu, 2019: Changes in ENSO amplitude under climate warming and cooling. Climate Dyn., 52, 18711882, https://doi.org/10.1007/s00382-018-4224-1.

    • Search Google Scholar
    • Export Citation
  • Wengel, C., M. Latif, W. Park, J. Harlaß, and T. Bayr, 2018: Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias. Climate Dyn., 50, 901919, https://doi.org/10.1007/s00382-017-3648-3.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7, 20082013, https://doi.org/10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1996: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53, 32363250, https://doi.org/10.1175/1520-0469(1996)053<3236:WPOLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yan, B., and R. Wu, 2007: Relative roles of different components of the basic state in the phase locking of El Niño mature phases. J. Climate, 20, 42674277, https://doi.org/10.1175/JCLI4242.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2018: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn., 52, 18051818, https://doi.org/10.1007/s00382-018-4219-y.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., 2019: Indo-Pacific climate modes in warming climate: Consensus and uncertainty across model projections. Curr. Climate Change Rep., 5, 308321, https://doi.org/10.1007/s40641-019-00152-9.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, L.-H. Lv, and Z.-Q. Zhou, 2016: Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J. Climate, 29, 72657279, https://doi.org/10.1175/JCLI-D-16-0039.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to internal variability. Climate Dyn., 50, 40194035, https://doi.org/10.1007/s00382-017-3859-7.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., C. Hui, S.-P. Xie, W. Cai, and S.-M. Long, 2019: Intensification of El Niño rainfall variability over the tropical Pacific in the slow oceanic response to global warming. Geophys. Res. Lett., 46, 22532260, https://doi.org/10.1029/2018GL081414.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., J. Lu, and C. Hui, 2021: Response of seasonal phase locking of Indian Ocean dipole to global warming. Climate Dyn., 57, 27372751, https://doi.org/10.1007/s00382-021-05834-5.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, https://doi.org/10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 631 631 247
Full Text Views 221 221 93
PDF Downloads 281 281 117