Reduced Indian Ocean Dipole Asymmetry and Increased Extreme Negative Events under Future Greenhouse Warming

Yiling Zheng aEarth and Environmental Sciences Programme, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Yiling Zheng in
Current site
Google Scholar
PubMed
Close
,
Chi-Yung Tam aEarth and Environmental Sciences Programme, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Chi-Yung Tam in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5462-6880
, and
Matthew Collins bDepartment of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom

Search for other papers by Matthew Collins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Indian Ocean dipole (IOD) is a prominent interannual phenomenon in the tropical Indian Ocean (TIO), influencing weather and climate globally, particularly during extreme IOD events. The IOD shows notable amplitude asymmetry in both observations and historical simulations from the phase 6 of Coupled Model Intercomparison Project (CMIP6), with positive events having a greater magnitude than negative events, mainly due to the negative nonlinear dynamical heating. However, simulations under the shared socioeconomic pathway 5-8.5 (SSP5-8.5) scenario indicate a notable reduction in IOD asymmetry. It shows that this reduction points to an increased frequency of extreme negative IOD events under global warming. The primary cause of this reduced IOD asymmetry is less negative nonlinear dynamical heating in future simulations, especially the nonlinear zonal advection. Under global warming, the increased atmospheric static stability weakens the large-scale atmospheric response to sea surface temperature (SST) anomalies forcing. This leads to reduced strength of nonlinear zonal advection, resulting in a decreased IOD asymmetry. Nevertheless, nonlinear vertical advection, another key factor in IOD asymmetry, remains comparable due to the increased upper-ocean stratification in the eastern TIO. The reduced inhibition of negative nonlinear zonal advection and the increased SST response to deepening thermocline contribute to the increased frequency of extreme negative IOD events. These changes underscore the potential risks associated with negative IOD events in a warming world, emphasizing the importance of understanding IOD dynamics for improved climate impact prediction and future preparedness.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chi-Yung Tam, francis.tam@cuhk.edu.hk

Abstract

The Indian Ocean dipole (IOD) is a prominent interannual phenomenon in the tropical Indian Ocean (TIO), influencing weather and climate globally, particularly during extreme IOD events. The IOD shows notable amplitude asymmetry in both observations and historical simulations from the phase 6 of Coupled Model Intercomparison Project (CMIP6), with positive events having a greater magnitude than negative events, mainly due to the negative nonlinear dynamical heating. However, simulations under the shared socioeconomic pathway 5-8.5 (SSP5-8.5) scenario indicate a notable reduction in IOD asymmetry. It shows that this reduction points to an increased frequency of extreme negative IOD events under global warming. The primary cause of this reduced IOD asymmetry is less negative nonlinear dynamical heating in future simulations, especially the nonlinear zonal advection. Under global warming, the increased atmospheric static stability weakens the large-scale atmospheric response to sea surface temperature (SST) anomalies forcing. This leads to reduced strength of nonlinear zonal advection, resulting in a decreased IOD asymmetry. Nevertheless, nonlinear vertical advection, another key factor in IOD asymmetry, remains comparable due to the increased upper-ocean stratification in the eastern TIO. The reduced inhibition of negative nonlinear zonal advection and the increased SST response to deepening thermocline contribute to the increased frequency of extreme negative IOD events. These changes underscore the potential risks associated with negative IOD events in a warming world, emphasizing the importance of understanding IOD dynamics for improved climate impact prediction and future preparedness.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chi-Yung Tam, francis.tam@cuhk.edu.hk

Supplementary Materials

    • Supplemental Materials (PDF 1.1631 MB)
Save
  • Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301, 952955, https://doi.org/10.1126/science.1083841.

    • Search Google Scholar
    • Export Citation
  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci., 1, 849853, https://doi.org/10.1038/ngeo357.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., H.-J. Park, S.-K. Kim, J. Shin, S.-W. Yeh, and J.-S. Kug, 2022: Intensity changes of Indian Ocean Dipole mode in a carbon dioxide removal scenario. npj Climate Atmos. Sci., 5, 20, https://doi.org/10.1038/s41612-022-00246-6.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., H.-J. Park, S.-K. Kim, W. Cai, A. Santoso, D. Kim, and J.-S. Kug, 2023: Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model. npj Climate Atmos. Sci., 6, 93, https://doi.org/10.1038/s41612-023-00422-2.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Potemra, R. Murtugudde, and J. P. McCreary, 2005: Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J. Climate, 18, 34503469, https://doi.org/10.1175/JCLI3494.1.

    • Search Google Scholar
    • Export Citation
  • Armstrong McKay, D. I., and Coauthors, 2022: Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2020: A road map to IndOOS-2: Better observations of the rapidly warming Indian Ocean. Bull. Amer. Meteor. Soc., 101, E1891E1913, https://doi.org/10.1175/BAMS-D-19-0209.1.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Y. Qiu, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 28802890, https://doi.org/10.1175/JCLI-D-12-00483.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Raupach, 2009: Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, https://doi.org/10.1029/2009GL039902.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, https://doi.org/10.1175/JCLI-D-11-00501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510, 254258, https://doi.org/10.1038/nature13327.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cai, W., K. Yang, L. Wu, G. Huang, A. Santoso, B. Ng, G. Wang, and T. Yamagata, 2021: Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Climate Change, 11, 2732, https://doi.org/10.1038/s41558-020-00943-1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 22092224, https://doi.org/10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, X. Chen, W. Zhang, L. Zhang, M. Wu, and L. Zou, 2022: Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun., 13, 2552, https://doi.org/10.1038/s41467-022-30106-z.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, https://doi.org/10.1038/nature11882.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Vialard, S. S. C. Shenoi, D. Shankar, F. Durand, C. Ethé, and G. Madec, 2007: Simulated seasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. J. Climate, 20, 32493268, https://doi.org/10.1175/JCLI4148.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1987: Better bootstrap confidence intervals. J. Amer. Stat. Assoc., 82, 171185, https://doi.org/10.1080/01621459.1987.10478410.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648, https://doi.org/10.1080/00031305.1983.10483087.

    • Search Google Scholar
    • Export Citation
  • Endo, S., and T. Tozuka, 2016: Two flavors of the Indian Ocean Dipole. Climate Dyn., 46, 33713385, https://doi.org/10.1007/s00382-015-2773-0.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Sampling physical ocean fields in WCRP CMIP5 simulations: CLIVAR Working Group on Ocean Model Development (WGOMD) committee on CMIP5 ocean model output (No. 137). WCRP Informal Tech. Rep. 3/2009, 56 pp., http://n2t.net/ark:/85065/d7416zk6.

  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Climate Change, 9, 269278, https://doi.org/10.1038/s41558-019-0436-6.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., 2017: A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback. Geophys. Res. Lett., 44, 85768584, https://doi.org/10.1002/2017GL074842.

    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., and G. P. Peters, 2020: Emissions – the ‘business as usual’ story is misleading. Nature, 577, 618620, https://doi.org/10.1038/d41586-020-00177-3.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and Coauthors, 2019: A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Front. Mar. Sci., 6, 355, https://doi.org/10.3389/fmars.2019.00355.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., and T. Li, 2010: Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 37, L11702, https://doi.org/10.1029/2010GL043380.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008a: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, https://doi.org/10.1175/2008JCLI2222.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, and J.-J. Luo, 2008b: Asymmetry of the Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21, 48494858, https://doi.org/10.1175/2008JCLI2223.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the Tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, https://doi.org/10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Hui, C., and X.-T. Zheng, 2018: Uncertainty in Indian Ocean Dipole response to global warming: The role of internal variability. Climate Dyn., 51, 35973611, https://doi.org/10.1007/s00382-018-4098-2.

    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, and M. A. Cane, 2008: Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate, 21, 20352046, https://doi.org/10.1175/2007JCLI1945.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, https://doi.org/10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2018: Weakening of nonlinear ENSO under global warming. Geophys. Res. Lett., 45, 85578567, https://doi.org/10.1029/2018GL079085.

    • Search Google Scholar
    • Export Citation
  • Le, T., and D.-H. Bae, 2019: Causal links on interannual timescale between ENSO and the IOD in CMIP5 future simulations. Geophys. Res. Lett., 46, 28202828, https://doi.org/10.1029/2018GL081633.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lian, X., and Coauthors, 2018: Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Climate Change, 8, 640646, https://doi.org/10.1038/s41558-018-0207-9.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., 1980: Tests of univariate and multivariate normality. Analysis of Variance, P. R. Krishnaiah, Ed., Vol. I, Handbook of Statistics, North Holland Publishing Company, 279–320.

  • McKenna, S., A. Santoso, A. S. Gupta, A. S. Taschetto, and W. Cai, 2020: Indian Ocean Dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO. Sci. Rep., 10, 11500, https://doi.org/10.1038/s41598-020-68268-9.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943, https://doi.org/10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, https://doi.org/10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Climate Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w.

    • Search Google Scholar
    • Export Citation
  • Ng, B., and W. Cai, 2016: Present-day zonal wind influences projected Indian Ocean Dipole skewness. Geophys. Res. Lett., 43, 11 39211 399, https://doi.org/10.1002/2016GL071208.

    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, and K. Walsh, 2014: The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming. Sci. Rep., 4, 6034, https://doi.org/10.1038/srep06034.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., S.-P. Xie, J. Lan, and X. Zheng, 2013: Importance of ocean dynamics for the skewness of the Indian Ocean dipole mode. J. Climate, 26, 21452159, https://doi.org/10.1175/JCLI-D-11-00615.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin, 2002: The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 6165, https://doi.org/10.1038/nature01131.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., K.-J. Ha, W. Cai, E.-S. Chung, and T. Bódai, 2022: Local meridional circulation changes contribute to a projected slowdown of the Indian Ocean Walker circulation. npj Climate Atmos. Sci., 5, 15, https://doi.org/10.1038/s41612-022-00242-w.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., K.-J. Ha, R. Yamaguchi, K. B. Rodgers, A. Timmermann, and E.-S. Chung, 2023: Future Indian Ocean warming patterns. Nat. Commun., 14, 1789, https://doi.org/10.1038/s41467-023-37435-7.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., B. Dewitte, S.-I. An, S. Illig, and N. Ayoub, 2013: Influence of recent stratification changes on ENSO stability in a conceptual model of the equatorial Pacific. J. Climate, 26, 47904802, https://doi.org/10.1175/JCLI-D-12-00363.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, https://doi.org/10.1038/19505.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, and T. Yamagata, 2008: Tropical Indian Ocean variability revealed by self-organizing maps. Climate Dyn., 31, 333343, https://doi.org/10.1007/s00382-007-0356-4.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2005: A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett., 32, L15710, https://doi.org/10.1029/2005GL022709.

    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, K. Yang, A. Santoso, and T. Yamagata, 2020: A unique feature of the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett., 47, e2020GL088615, https://doi.org/10.1029/2020GL088615.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Xu, K., H.-Y. Miao, B. Liu, C.-Y. Tam, and W. Wang, 2020: Aggravation of record-breaking drought over the mid-to-lower reaches of the Yangtze River in the post-monsoon season of 2019 by anomalous Indo-Pacific oceanic conditions. Geophys. Res. Lett., 47, e2020GL090847, https://doi.org/10.1029/2020GL090847.

    • Search Google Scholar
    • Export Citation
  • Yang, K., W. Cai, G. Huang, G. Wang, B. Ng, and S. Li, 2020: Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean Dipole nonlinearity. Geophys. Res. Lett., 47, e2020GL089396, https://doi.org/10.1029/2020GL089396.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, https://doi.org/10.1175/JCLI-D-15-0078.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Du, and W. Cai, 2018: Low-frequency variability and the unusual Indian Ocean Dipole events in 2015 and 2016. Geophys. Res. Lett., 45, 10401048, https://doi.org/10.1002/2017GL076003.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Liu, 2013: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Climate, 26, 60676080, https://doi.org/10.1175/JCLI-D-12-00638.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., C.-Y. Tam, K. Xu, and M. Collins, 2024: Origins of underestimated Indian Ocean dipole skewness in CMIP5/6 models. J. Climate, 37, 837853, https://doi.org/10.1175/JCLI-D-23-0412.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Search Google Scholar
    • Export Citation
  • Zubair, L., S. A. Rao, and T. Yamagata, 2003: Modulation of Sri Lankan Maha rainfall by the Indian Ocean Dipole. Geophys. Res. Lett., 30, 1063, https://doi.org/10.1029/2002GL015639.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1516 1516 781
Full Text Views 174 174 27
PDF Downloads 203 203 18