Abstract
The Indian Ocean dipole (IOD) is a prominent interannual phenomenon in the tropical Indian Ocean (TIO), influencing weather and climate globally, particularly during extreme IOD events. The IOD shows notable amplitude asymmetry in both observations and historical simulations from the phase 6 of Coupled Model Intercomparison Project (CMIP6), with positive events having a greater magnitude than negative events, mainly due to the negative nonlinear dynamical heating. However, simulations under the shared socioeconomic pathway 5-8.5 (SSP5-8.5) scenario indicate a notable reduction in IOD asymmetry. It shows that this reduction points to an increased frequency of extreme negative IOD events under global warming. The primary cause of this reduced IOD asymmetry is less negative nonlinear dynamical heating in future simulations, especially the nonlinear zonal advection. Under global warming, the increased atmospheric static stability weakens the large-scale atmospheric response to sea surface temperature (SST) anomalies forcing. This leads to reduced strength of nonlinear zonal advection, resulting in a decreased IOD asymmetry. Nevertheless, nonlinear vertical advection, another key factor in IOD asymmetry, remains comparable due to the increased upper-ocean stratification in the eastern TIO. The reduced inhibition of negative nonlinear zonal advection and the increased SST response to deepening thermocline contribute to the increased frequency of extreme negative IOD events. These changes underscore the potential risks associated with negative IOD events in a warming world, emphasizing the importance of understanding IOD dynamics for improved climate impact prediction and future preparedness.
© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).