Evaluation of Equatorial Westerly Wind Events in the Pacific Ocean in CMIP6 Models

Emily M. Riley Dellaripa aColorado State University, Fort Collins, Colorado

Search for other papers by Emily M. Riley Dellaripa in
Current site
Google Scholar
PubMed
Close
,
Charlotte DeMott aColorado State University, Fort Collins, Colorado

Search for other papers by Charlotte DeMott in
Current site
Google Scholar
PubMed
Close
,
Jingxuan Cui aColorado State University, Fort Collins, Colorado

Search for other papers by Jingxuan Cui in
Current site
Google Scholar
PubMed
Close
, and
Eric D. Maloney aColorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Westerly wind events (WWEs) are anomalously strong, long-lasting westerlies over the Indian or Pacific Oceans that are capable of forcing oceanic wave modes, which in turn can impact the evolution of coupled ocean–atmosphere phenomena such as El Niño–Southern Oscillation (ENSO). This work examines the fidelity of equatorial WWEs over the Pacific Ocean in 30 CMIP6 historical simulations against observations. WWEs are identified using equatorially averaged zonal wind stress anomaly duration, zonal extent, and intensity criteria. Most simulations correctly place the majority of WWEs over the west Pacific although they are skewed westward and generally occur less frequently compared to observations. Simulated WWEs tend to be weaker than observations for a given duration and zonal extent with several models having shorter durations and zonal extents than observations. Biases in simulated WWEs are associated with biases in Madden–Julian oscillation (MJO) and convectively coupled Rossby wave (CRW) variability. Models that underpredict WWE forcing in the west Pacific also severely underpredict MJO and CRW variance. Further, the multimodel mean shows a smaller fraction of WWEs associated with both the MJO and CRW than observations.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily M. Riley Dellaripa, emily.riley@colostate.edu

Abstract

Westerly wind events (WWEs) are anomalously strong, long-lasting westerlies over the Indian or Pacific Oceans that are capable of forcing oceanic wave modes, which in turn can impact the evolution of coupled ocean–atmosphere phenomena such as El Niño–Southern Oscillation (ENSO). This work examines the fidelity of equatorial WWEs over the Pacific Ocean in 30 CMIP6 historical simulations against observations. WWEs are identified using equatorially averaged zonal wind stress anomaly duration, zonal extent, and intensity criteria. Most simulations correctly place the majority of WWEs over the west Pacific although they are skewed westward and generally occur less frequently compared to observations. Simulated WWEs tend to be weaker than observations for a given duration and zonal extent with several models having shorter durations and zonal extents than observations. Biases in simulated WWEs are associated with biases in Madden–Julian oscillation (MJO) and convectively coupled Rossby wave (CRW) variability. Models that underpredict WWE forcing in the west Pacific also severely underpredict MJO and CRW variance. Further, the multimodel mean shows a smaller fraction of WWEs associated with both the MJO and CRW than observations.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily M. Riley Dellaripa, emily.riley@colostate.edu
Save
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 28892919, https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., R. T. Sutton, and D. L. T. Anderson, 2002: The effect of El Nino on intraseasonal Kelvin waves. Quart. J. Roy. Meteor. Soc., 128, 12771291, https://doi.org/10.1256/003590002320373292.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boucharel, J., F.-F. Jin, M. H. England, B. Dewitte, I. I. Lin, H.-C. Huang, and M. A. Balmaseda, 2016: Influence of oceanic intraseasonal Kelvin waves on eastern Pacific hurricane activity. J. Climate, 29, 79417955, https://doi.org/10.1175/JCLI-D-16-0112.1.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and Coauthors, 2001: Role of non-linear oceanic processes in the response to westerly wind events: New implications for the 1997 El Niño onset. Geophys. Res. Lett., 28, 16031606, https://doi.org/10.1029/2000GL012364.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., C. Menkes, and M. Lengaigne, 2004: Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Climate Dyn., 22, 267280, https://doi.org/10.1007/s00382-003-0383-8.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and Coauthors, 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate Past, 16, 17771805, https://doi.org/10.5194/cp-16-1777-2020.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model., 15, 274298, https://doi.org/10.1016/j.ocemod.2006.02.004.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2017: Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014/15. J. Climate, 30, 15051519, https://doi.org/10.1175/JCLI-D-16-0385.1.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian oscillation and westerly wind events. J. Climate, 27, 36193642, https://doi.org/10.1175/JCLI-D-13-00547.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1988: Extratropical forcing and the burst of equatorial westerlies in the western Pacific: A synoptic study. J. Meteor. Soc. Japan, 66, 549564, https://doi.org/10.2151/jmsj1965.66.4_549.

    • Search Google Scholar
    • Export Citation
  • Cui, J., C. A. DeMott, E. M. Riley Dellaripa, and E. D. Maloney, 2023: Process-based evaluation of intraseasonal oceanic Kelvin waves in CMIP6 models. 2023 Fall Meeting 2023, San Francisco, CA, Amer. Geophys. Union, Abstract A23G-04.

  • Delcroix, T., J. Picaut, and G. Eldin, 1991: Equatorial Kelvin and Rossby waves evidenced in the Pacific Ocean through Geosat sea level and surface current anomalies. J. Geophys. Res., 96, 32493262, https://doi.org/10.1029/90JC01758.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., H. Bellenger, E. Guilyardi, M. Lengaigne, J. Vialard, and G. Madec, 2015: Processes driving intraseasonal displacements of the eastern edge of the warm pool: The contribution of westerly wind events. Climate Dyn., 44, 735755, https://doi.org/10.1007/s00382-014-2297-z.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2008: Observations of the dispersion characteristics and meridional sea level structure of equatorial waves in the Pacific Ocean. J. Phys. Oceanogr., 38, 16691689, https://doi.org/10.1175/2007JPO3890.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2000: Atmospheric and surface variations during westerly wind bursts in the tropical western Pacific. Quart. J. Roy. Meteor. Soc., 126, 899924, https://doi.org/10.1002/qj.49712656407.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128 (579), 123, https://doi.org/10.1002/qj.200212857901.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and T. Lian, 2018: Assessing the relationship between MJO and equatorial Pacific WWBs in observations and CMIP5 models. J. Climate, 31, 63936410, https://doi.org/10.1175/JCLI-D-17-0526.1.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Search Google Scholar
    • Export Citation
  • Gehne, M., 2021: Tropical Diagnostics Toolbox for Numerical Weather Forecasts (version 1.2). GitHub, accessed 20 February 2024, https://github.com/mgehne/tropical_diagnostics/.

  • Giese, B. S., and D. E. Harrison, 1990: Aspects of the Kelvin wave response to episodic wind forcing. J. Geophys. Res., 95, 72897312, https://doi.org/10.1029/JC095iC05p07289.

    • Search Google Scholar
    • Export Citation
  • Han, W., T. Shinoda, L.-L. Fu, and J. P. McCreary, 2006: Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s. J. Phys. Oceanogr., 36, 670690, https://doi.org/10.1175/JPO2892.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and P. S. Schopf, 1984: Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon. Wea. Rev., 112, 923933, https://doi.org/10.1175/1520-0493(1984)112<0923:KWIAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 32213237, https://doi.org/10.1029/90JC01775.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. J. Geophys. Res., 101, 16 99717 019, https://doi.org/10.1029/96JD00030.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dyn., 52, 73397357, https://doi.org/10.1007/s00382-017-3531-2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, https://doi.org/10.1002/2014GL059573.

    • Search Google Scholar
    • Export Citation
  • Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 29232939, https://doi.org/10.1175/JCLI-D-20-0166.1.

    • Search Google Scholar
    • Export Citation
  • Jauregui, Y. R., and S. S. Chen, 2024: MJO-induced warm pool eastward extension prior to the onset of El Niño: Observations from 1998 to 2019. J. Climate, 37, 855873, https://doi.org/10.1175/JCLI-D-23-0234.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Search Google Scholar
    • Export Citation
  • Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110, 14051416, https://doi.org/10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate, 8, 17571774, https://doi.org/10.1175/1520-0442(1995)008<1757:OEWATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., G. A. Meehl, and K. M. Weickmann, 1994: Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99, 18 52718 544, https://doi.org/10.1029/94JD01486.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2022: The Madden–Julian Oscillation in the Energy Exascale Earth System Model Version 1. J. Adv. Model. Earth Syst., 14, e2021MS002842, https://doi.org/10.1029/2021MS002842.

    • Search Google Scholar
    • Export Citation
  • Kim, H., J. M. Caron, J. H. Richter, and I. R. Simpson, 2020: The lack of QBO-MJO connection in CMIP6 models. Geophys. Res. Lett., 47, e2020GL087295, https://doi.org/10.1029/2020GL087295.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10, 16901704, https://doi.org/10.1175/1520-0442(1997)010<1690:ORWDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., and M. McPhaden, 2002: Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997–98 El Nino. J. Phys. Oceanogr., 32, 11331149, https://doi.org/10.1175/1520-0485(2002)032<1133:IVITUE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., J. Biercamp, and H. von Storch, 1988: The response of a coupled ocean-atmosphere general circulation model to wind bursts. J. Atmos. Sci., 45, 964979, https://doi.org/10.1175/1520-0469(1988)045<0964:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delecluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly wind event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 33303343, https://doi.org/10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, P. Delecluse, and J. Slingo, 2004a: Westerly wind events in the tropical Pacific and their influence on the coupled ocean-atmosphere system: A review. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 49–69, https://doi.org/10.1029/147GM03.

  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004b: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Wu, J.-J. Luo, and Y. M. Yang, 2022: Evaluating the eastward propagation of the MJO in CMIP5 and CMIP6 models based on a variety of diagnostics. J. Climate, 35, 17191743, https://doi.org/10.1175/JCLI-D-21-0378.1.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, and Q. Wu, 2014: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 35223527, https://doi.org/10.1002/2014GL059989.

    • Search Google Scholar
    • Export Citation
  • Lian, T., Y. Tang, L. Zhou, S. U. Islam, C. Zhang, X. Li, and Z. Ling, 2018: Westerly wind bursts simulated in CAM4 and CCSM4. Climate Dyn., 50, 13531371, https://doi.org/10.1007/s00382-017-3689-7.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., and A. V. Fedorov, 2021: Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development. Climate Dyn., 57, 10391060, https://doi.org/10.1007/s00382-021-05757-1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave 525 radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Long, B., and P. Chang, 1990: Propagation of an equatorial Kelvin wave in a varying thermocline. J. Phys. Oceanogr., 20, 18261841, https://doi.org/10.1175/1520-0485(1990)020<1826:POAEKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2013: Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys. Res. Lett., 40, 47224727, https://doi.org/10.1002/grl.50913.

    • Search Google Scholar
    • Export Citation
  • Luther, D. S., and D. E. Harrison, 1984: Observing long-period fluctuations of surface winds in the tropical Pacific: Initial results from island data. Mon. Wea. Rev., 112, 285302, https://doi.org/10.1175/1520-0493(1984)112<0285:OLPFOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, https://doi.org/10.1126/science.222.4621.327.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteor. Soc., 100, 16651686, https://doi.org/10.1175/BAMS-D-18-0042.1.

    • Search Google Scholar
    • Export Citation
  • Matsuura, T., and S. Iizuka, 2000: Zonal migration of the Pacific warm-pool tongue during El Niño events. J. Phys. Oceanogr., 30, 15821600, https://doi.org/10.1175/1520-0485(2000)030<1582:ZMOTPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, F.-F. Jin, and W. S. Kessler, 2016: Charging El Niño with off-equatorial westerly wind events. Climate Dyn., 47, 11111125, https://doi.org/10.1007/s00382-015-2891-8.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677696, https://doi.org/10.1175/BAMS-85-5-677.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and B. A. Taft, 1988: Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J. Phys. Oceanogr., 18, 17131732, https://doi.org/10.1175/1520-0485(1988)018<1713:DOSAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., H. P. Freitag, S. P. Hayes, B. A. Taft, Z. Chien, and K. Wyrtki, 1988: The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. J. Geophys. Res., 93, 10 58910 603, https://doi.org/10.1029/JC093iC09p10589.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012%3C1199:SFOEBT%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and Coauthors, 2023: Process-oriented diagnostics: Principles, practice, community development, and common standards. Bull. Amer. Meteor. Soc., 104, E1452E1468, https://doi.org/10.1175/BAMS-D-21-0268.1.

    • Search Google Scholar
    • Export Citation
  • NOAA CPC, 2024: Cold and warm ENSO episodes by season. NOAA, accessed 23 January 2024, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

  • Perigaud, C. M., and C. Cassou, 2000: Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño. Geophys. Res. Lett., 27, 389392, https://doi.org/10.1029/1999GL010781.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., and T. Delcroix, 1995: Equatorial wave sequence associated with warm pool displacements during the 1986–1989 El Niño-La Niña. J. Geophys. Res., 100, 18 39318 408, https://doi.org/10.1029/95JC01358.

    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, M. J. McPhaden, M. F. Cronin, F. Pinsard, and K. Gopala Reddy, 2013: TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Climate Dyn., 40, 20492071, https://doi.org/10.1007/s00382-012-1455-4.

    • Search Google Scholar
    • Export Citation
  • Pujiana, K., and M. J. McPhaden, 2020: Intraseasonal Kelvin waves in the equatorial Indian Ocean and their propagation into the Indonesian seas. J. Geophys. Res. Oceans, 125, e2019JC015839, https://doi.org/10.1029/2019JC015839.

    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Search Google Scholar
    • Export Citation
  • Puy, M., and Coauthors, 2019: Influence of Westerly Wind Events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Climate Dyn., 52, 74357454, https://doi.org/10.1007/s00382-017-3938-9.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, https://doi.org/10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 52535272, https://doi.org/10.1175/JCLI3893.1.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and T. G. Jensen, 2017: Oceanic impetus for convective onset of the Madden–Julian oscillation in the western Indian Ocean. J. Climate, 30, 42994316, https://doi.org/10.1175/JCLI-D-16-0595.1.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and Coauthors, 2023: Anchoring intraseasonal air–sea interactions: The moored moist static energy budget in the Indian Ocean from reanalysis. J. Climate, 36, 959981, https://doi.org/10.1175/JCLI-D-22-0182.1.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., Y. N. Takayabu, T. Yasuda, N. Sato, C. Takahashi, K. Yoneyama, and R. Shirooka, 2011: Westerly wind bursts and their relationship with ENSO in CMIP3 models. J. Geophys. Res., 116, D03303, https://doi.org/10.1029/2010JD015039.

    • Search Google Scholar
    • Export Citation
  • Tan, X., Y. Tang, T. Lian, Z. Yao, X. Li, and D. Chen, 2020: A study of the effects of westerly wind bursts on ENSO based on CESM. Climate Dyn., 54, 885899, https://doi.org/10.1007/s00382-019-05034-2.

    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, https://doi.org/10.1175/1520-0442(2000)013,1814:TPSSTA.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakata, Y., 2007: Frequency-wavenumber spectra of equatorial waves detected from satellite altimeter data. J. Oceanogr., 63, 483490, https://doi.org/10.1007/s10872-007-0043-4.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 136, 740754, https://doi.org/10.1002/qj.604.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, K. J. Heywood, and D. P. Stevens, 2012: Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Quart. J. Roy. Meteor. Soc., 138, 514527, https://doi.org/10.1002/qj.936.

    • Search Google Scholar
    • Export Citation
  • West, B. J., W. Han, L. Zhang, and Y. Li, 2020: The role of oceanic processes in the initiation of boreal winter intraseasonal oscillations over the Indian Ocean. J. Geophys. Res. Oceans, 125, e2019JC015426, https://doi.org/10.1029/2019JC015426.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, P. N. DiNezio, S. G. Yeager, and C. Deser, 2022: The equatorial Pacific cold tongue bias in CESM1 and its influence on ENSO forecasts. J. Climate, 35, 32613277, https://doi.org/10.1175/JCLI-D-21-0470.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1998: Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys. Res. Lett., 25, 35373540, https://doi.org/10.1029/98GL02628.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, https://doi.org/10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Yu, S., and A. V. Fedorov, 2020: The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophys. Res. Lett., 47, e2020GL088381, https://doi.org/10.1029/2020GL088381.

    • Search Google Scholar
    • Export Citation
  • Yu, X., and M. J. McPhaden, 1999: Seasonal variability in the equatorial Pacific. J. Phys. Oceanogr., 29, 925947, https://doi.org/10.1175/1520-0485(1999)029<0925:SVITEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and H. Liu, 2009: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 11151132, https://doi.org/10.1175/2008JPO3900.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 2291 2291 1375
Full Text Views 202 202 39
PDF Downloads 197 197 30