Abstract
The tropical Pacific convergence zone plays a crucial role in the global climate system. Previous research studies emphasized the cross-seasonal influence of the South Pacific quadrupole (SPQ) mode on the tropical Pacific climate. This study assesses the relationship between austral summer SPQ and austral winter tropical precipitation in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. The analysis emphasizes the historical experiments conducted within this time frame, spanning from 1979 to 2014. Our findings reveal that the SPQ is accurately represented in all CMIP6 models, but the connection between SPQ and precipitation is inadequately simulated in most models. To investigate the reasons behind these intermodel differences in reproducing SPQ-related processes, we categorize models into two groups. The comparisons demonstrate that the fidelity of model simulations in replicating the SPQ–tropical precipitation relationship hinges significantly on their capacity to reproduce the positive wind–evaporation–sea surface temperature (WES; SST) feedback over both the southwestern Pacific (25°–10°S; 150°E–160°W) and the southeastern Pacific (30°–10°S; 140°–80°W). This positive WES feedback propagates the SPQ signal into the tropics, intensifying the meridional gradient of SST anomaly in the tropical western-central Pacific, which consequently amplifies convection and rainfall in that area. In the group of models that failed to simulate this relationship accurately, the weakened WES feedback can be traced back to biases in wind speed and its variation. Furthermore, this WES feedback establishes a connection between SPQ and El Niño–Southern Oscillation (ENSO). A better rendition of the SPQ–tropical rainfall connection tends to result in a better simulation of the onset of SPQ-related ENSO events. As a result, this study advances our comprehension of extratropical impacts on the tropics, with the potential to enhance the accuracy of tropical climate simulation and prediction.
Significance Statement
Tropical rainfall plays an important role in the global climate system. Beyond the well-known influence of El Niño–Southern Oscillation (ENSO) on the tropical rainfall, the sea surface temperature (SST) anomaly in the South Pacific has a cross-seasonal impact on the precipitation over the tropical Pacific via air–sea coupled processes. Such SST anomaly pattern shows a quadrupole structure in the extratropical South Pacific, known as the South Pacific quadrupole (SPQ) mode. However, the relationship between SPQ and tropical precipitation remains poorly simulated in most state-of-the-art climate models. One primary reason for this gap between observed and simulated relationships is the underestimation of wind speed and its variation over the south tropical Pacific in these models. This limitation undermines their ability to accurately represent the air–sea interactions that drive tropical precipitation patterns, leading to inaccuracies in simulations. Our study aims to bridge this knowledge gap by enhancing our understanding of the extratropical effects on the tropical Pacific. By exploring the mechanisms underlying the SPQ–precipitation connection, we expect to improve the simulation and prediction capabilities of tropical climate models, thereby enhancing our ability to forecast and adapt to future climatic changes.
© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).