Insights of Dynamic Forcing Effects of MJO on ENSO from a Shallow Water Model

Jinyu Wang aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bShanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Fudan University, Shanghai, China
cShanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Shanghai, China

Search for other papers by Jinyu Wang in
Current site
Google Scholar
PubMed
Close
,
Xianghui Fang aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bShanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Fudan University, Shanghai, China
cShanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Shanghai, China

Search for other papers by Xianghui Fang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1210-0055
,
Nan Chen dDepartment of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Nan Chen in
Current site
Google Scholar
PubMed
Close
, and
Mu Mu aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bShanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Fudan University, Shanghai, China
cShanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Shanghai, China

Search for other papers by Mu Mu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) is believed to play a significant role in triggering El Niño–Southern Oscillation (ENSO) events and affect the dynamics of ENSO. In this study, the dynamic forcing effects of MJO on the equatorial oceanic dynamic fields and the onsets of different types of ENSO events are investigated through sensitive experiments using spatiotemporally filtered forcing based on an anomalous shallow water model. The comparisons between observations and model responses provide meaningful insights into the extent of MJO’s impacts on sea surface dynamics relative to other atmospheric variabilities. The following conclusions are made. First, the MJO-forced perturbations on zonal currents are stronger and more significant than those on sea surface heights. Second, MJO is essential for improving zonal current simulation in the western-central Pacific and generating activity centers of zonal currents in the eastern Pacific in the model. Third, MJO tends to contribute to the onset of El Niño events rather than La Niña events. Strong intraseasonal oceanic Kelvin waves forced by MJO are confirmed in simulations during the onset stages of the 1997/98 and 2004/05 events. The 120-day running standard deviations of zonal current and sea surface height anomaly series forced by MJO exhibit positive skewness similar to those of the 20–100-day band-passed observational series. Yet, not all the onsets of historical ENSO events are in company with strong MJO-related perturbations. Additionally, the wind stress formula can amplify the responses of zonal current and sea surface height anomalies to synoptic forcings with periods shorter than 20 days through entraining lower-frequency variabilities.

Significance Statement

The Madden–Julian oscillation (MJO) is believed to be able to trigger El Niño–Southern Oscillation (ENSO) events and influence our understanding of the fundamental nature of ENSO. In this study, spatiotemporally filtered forcing experiments are implemented on an anomalous shallow water model. The results show that MJO is more important for improving the simulation of surface zonal currents rather than the sea surface heights and tends to contribute to the onset of El Niño events rather than La Niña events through triggering strong intraseasonal oceanic Kelvin waves.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Fang, fangxh@fudan.edu.cn

Abstract

The Madden–Julian oscillation (MJO) is believed to play a significant role in triggering El Niño–Southern Oscillation (ENSO) events and affect the dynamics of ENSO. In this study, the dynamic forcing effects of MJO on the equatorial oceanic dynamic fields and the onsets of different types of ENSO events are investigated through sensitive experiments using spatiotemporally filtered forcing based on an anomalous shallow water model. The comparisons between observations and model responses provide meaningful insights into the extent of MJO’s impacts on sea surface dynamics relative to other atmospheric variabilities. The following conclusions are made. First, the MJO-forced perturbations on zonal currents are stronger and more significant than those on sea surface heights. Second, MJO is essential for improving zonal current simulation in the western-central Pacific and generating activity centers of zonal currents in the eastern Pacific in the model. Third, MJO tends to contribute to the onset of El Niño events rather than La Niña events. Strong intraseasonal oceanic Kelvin waves forced by MJO are confirmed in simulations during the onset stages of the 1997/98 and 2004/05 events. The 120-day running standard deviations of zonal current and sea surface height anomaly series forced by MJO exhibit positive skewness similar to those of the 20–100-day band-passed observational series. Yet, not all the onsets of historical ENSO events are in company with strong MJO-related perturbations. Additionally, the wind stress formula can amplify the responses of zonal current and sea surface height anomalies to synoptic forcings with periods shorter than 20 days through entraining lower-frequency variabilities.

Significance Statement

The Madden–Julian oscillation (MJO) is believed to be able to trigger El Niño–Southern Oscillation (ENSO) events and influence our understanding of the fundamental nature of ENSO. In this study, spatiotemporally filtered forcing experiments are implemented on an anomalous shallow water model. The results show that MJO is more important for improving the simulation of surface zonal currents rather than the sea surface heights and tends to contribute to the onset of El Niño events rather than La Niña events through triggering strong intraseasonal oceanic Kelvin waves.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Fang, fangxh@fudan.edu.cn
Save
  • An, S.-I., F.-F. Jin, and I.-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model. J. Meteor. Soc. Japan, 77, 11511160, https://doi.org/10.2151/jmsj1965.77.6_1151.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., R. T. Sutton, and D. L. T. Anderson, 2002: The effect of El Niño on intraseasonal Kelvin waves. Quart. J. Roy. Meteor. Soc., 128, 12771291, https://doi.org/10.1256/003590002320373292.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 17021719, https://doi.org/10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and L.-L. Fu, 1996: Evidence of boundary reflection of Kelvin and first-mode Rossby waves from TOPEX/POSEIDON sea level data. J. Geophys. Res., 101, 16 36116 371, https://doi.org/10.1029/96JC01282.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and C. Menkes, 1999: Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Climate Dyn., 15, 205225, https://doi.org/10.1007/s003820050277.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1984: Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 18641874, https://doi.org/10.1175/1520-0485(1984)014<1864:MSLDEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, https://doi.org/10.1002/jgrc.20335.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, and L. Ricciardulli, 2018: The nature of the stochastic wind forcing of ENSO. J. Climate, 31, 80818099, https://doi.org/10.1175/JCLI-D-17-0842.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 Super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and T. Li, 2021: ENSO evolution asymmetry: EP versus CP El Niño. Climate Dyn., 56, 35693579, https://doi.org/10.1007/s00382-021-05654-7.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and X. Fang, 2023: A simple multiscale intermediate coupled stochastic model for El Niño diversity and complexity. J. Adv. Model. Earth Syst., 15, e2022MS003469, https://doi.org/10.1029/2022MS003469.

    • Search Google Scholar
    • Export Citation
  • Chen, N., X. Fang, and J.-Y. Yu, 2022: A multiscale model for El Niño complexity. npj Climate Atmos. Sci., 5, 16, https://doi.org/10.1038/s41612-022-00241-x.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., J.-P. Boulanger, F. Masia, and C. Menkes, 1994: Geosat-derived sea level and surface current anomalies in the equatorial Pacific during the 1986–1989 El Nino and La Nina. J. Geophys. Res., 99, 25 09325 107, https://doi.org/10.1029/94JC02138.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and G. Burgers, 2002: Fluid dynamics of El Niño variability. Annu. Rev. Fluid Mech., 34, 531558, https://doi.org/10.1146/annurev.fluid.34.090501.144936.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and F. Zheng, 2018: Simulating eastern- and central-Pacific type ENSO using a simple coupled model. Adv. Atmos. Sci., 35, 671681, https://doi.org/10.1007/s00376-017-7209-9.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and R. Xie, 2020: A brief review of ENSO theories and prediction. Sci. China Earth Sci., 63, 476491, https://doi.org/10.1007/s11430-019-9539-0.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and N. Chen, 2023: Quantifying the predictability of ENSO complexity using a statistically accurate multiscale stochastic model and information theory. J. Climate, 36, 26812702, https://doi.org/10.1175/JCLI-D-22-0151.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and M. Mu, 2018: A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J. Climate, 31, 49654979, https://doi.org/10.1175/JCLI-D-17-0633.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128, 123, https://doi.org/10.1002/qj.200212857901.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and T. Lian, 2018: Assessing the relationship between MJO and equatorial Pacific WWBs in observations and CMIP5 models. J. Climate, 31, 63936410, https://doi.org/10.1175/JCLI-D-17-0526.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., Q. Wang, S. Hu, and D. Hu, 2016: Intraseasonal variability of the tropical Pacific subsurface temperature in the two flavours of El Niño. Int. J. Climatol., 36, 867884, https://doi.org/10.1002/joc.4389.

    • Search Google Scholar
    • Export Citation
  • Geng, L., and F.-F. Jin, 2022: ENSO diversity simulated in a revised Cane-Zebiak Model. Front. Earth Sci., 10, 899323, https://doi.org/10.3389/feart.2022.899323.

    • Search Google Scholar
    • Export Citation
  • Geng, L., and F.-F. Jin, 2023a: Insights into ENSO diversity from an intermediate coupled model. Part I: Uniqueness and sensitivity of the ENSO mode. J. Climate, 36, 75097525, https://doi.org/10.1175/JCLI-D-23-0043.1.

    • Search Google Scholar
    • Export Citation
  • Geng, L., and F.-F. Jin, 2023b: Insights into ENSO diversity from an intermediate coupled model. Part II: Role of nonlinear dynamics and stochastic forcing. J. Climate, 36, 75277547, https://doi.org/10.1175/JCLI-D-23-0044.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys., 81, 444480, https://doi.org/10.1016/0021-9991(89)90216-7.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat‐induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and S. G. Philander, 2000: The energetics of El Nino and La Nina. J. Climate, 13, 14961516, https://doi.org/10.1175/1520-0442(2000)013<1496:TEOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 36693681, https://doi.org/10.1175/MWR-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Gushchina, D., and B. Dewitte, 2019: Decadal modulation of the relationship between intraseasonal tropical variability and ENSO. Climate Dyn., 52, 20912103, https://doi.org/10.1007/s00382-018-4235-y.

    • Search Google Scholar
    • Export Citation
  • Heath, A., A. O. Gonzalez, M. Gehne, and A. Jaramillo, 2021: Interactions of large-scale dynamics and Madden-Julian oscillation propagation in multi-model simulations. J. Geophys. Res. Atmos., 126, e2020JD033988, https://doi.org/10.1029/2020JD033988.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hou, J., Q. Liang, Z. Li, S. Wang, and R. Hinkelmann, 2015: Numerical error control for second-order explicit TVD scheme with limiters in advection simulation. Comput. Math. Appl., 70, 21972209, https://doi.org/10.1016/j.camwa.2015.08.022.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dyn., 52, 73397357, https://doi.org/10.1007/s00382-017-3531-2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, https://doi.org/10.1002/2014GL059573.

    • Search Google Scholar
    • Export Citation
  • Jauregui, Y. R., and S. S. Chen, 2024: MJO-induced warm pool eastward extension prior to the onset of El Niño: Observations from 1998 to 2019. J. Climate, 37, 855873, https://doi.org/10.1175/JCLI-D-23-0234.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kapur, A., and C. Zhang, 2012: Multiplicative MJO forcing of ENSO. J. Climate, 25, 81328147, https://doi.org/10.1175/JCLI-D-11-00609.1.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., 2001: Improved modelling of zonal currents and SST in the tropical Pacific. Ph.D. thesis, Monash University, 114 pp.

  • Kerns, B. W., and S. S. Chen, 2021: Impacts of precipitation–evaporation–salinity coupling on upper ocean stratification and momentum over the tropical Pacific prior to onset of the 2018 El Niño. Ocean Modell., 168, 101892, https://doi.org/10.1016/j.ocemod.2021.101892.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, https://doi.org/10.1029/95JC00382.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, W., S.-W. Yeh, J.-H. Kim, J.-S. Kug, and M. Kwon, 2011: The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett., 38, L15809, https://doi.org/10.1029/2011GL048521.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 1993: On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. J. Climate, 6, 20122033, https://doi.org/10.1175/1520-0442(1993)006<2012:OTDOHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., P. Li, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud clusters, westerly wind bursts, 30-60 day oscilations and ENSO: An unified view. J. Meteor. Soc. Japan, 67, 205219, https://doi.org/10.2151/jmsj1965.67.2_205.

    • Search Google Scholar
    • Export Citation
  • Lian, T., and D. Chen, 2021: The essential role of early-spring westerly wind bursts in generating the centennial extreme 1997/98 El Niño. J. Climate, 34, 83778388, https://doi.org/10.1175/JCLI-D-21-0010.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-S., L.-C. Wang, and J.-L. F. Li, 2023: Effects of equatorial ocean current bias on simulated El Niño pattern in CMIP6 models. Geophys. Res. Lett., 50, e2023GL102890, https://doi.org/10.1029/2023GL102890.

    • Search Google Scholar
    • Export Citation
  • Lybarger, N. D., and C. Stan, 2018: The effect of the MJO on the energetics of El Niño. Climate Dyn., 51, 28252839, https://doi.org/10.1007/s00382-017-4047-5.

    • Search Google Scholar
    • Export Citation
  • Lybarger, N. D., and C. Stan, 2019: Revisiting MJO, Kelvin waves, and El Niño relationships using a simple ocean model. Climate Dyn., 53, 63636377, https://doi.org/10.1007/s00382-019-04936-5.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966a: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966b: Numerical integrations of the primitive equations by a simulated backward difference method. J. Meteor. Soc. Japan, 44, 7684, https://doi.org/10.2151/jmsj1965.44.1_76.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., X. Zhang, H. H. Hendon, and M. C. Wheeler, 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, https://doi.org/10.1029/2006GL026786.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999a: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999b: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12, 29652982, https://doi.org/10.1175/1520-0442(1999)012<2965:TNNOEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mosquera-Vásquez, K., B. Dewitte, S. Illig, K. Takahashi, and G. Garric, 2013: The 2002/2003 El Niño: Equatorial waves sequence and their impact on sea surface temperature. J. Geophys. Res. Oceans, 118, 346357, https://doi.org/10.1029/2012JC008551.

    • Search Google Scholar
    • Export Citation
  • Mosquera-Vásquez, K., B. Dewitte, and S. Illig, 2014: The central Pacific El Niño intraseasonal Kelvin wave. J. Geophys. Res. Oceans, 119, 66056621, https://doi.org/10.1002/2014JC010044.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and W. L. Sumathipala, 1989: Westerly bursts during the 1982/83 ENSO. J. Climate, 2, 7185, https://doi.org/10.1175/1520-0442(1989)002<0071:WBDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • NOAA NCEI, 2022: ETOPO 2022 15 arc-second global relief model. Accessed 23 November 2023, https://doi.org/10.25921/fd45-gt74.

  • Peng, Y., W. Duan, and J. Xiang, 2011: Effect of stochastic MJO forcing on ENSO predictability. Adv. Atmos. Sci., 28, 12791290, https://doi.org/10.1007/s00376-011-0126-4.

    • Search Google Scholar
    • Export Citation
  • Perez, C. L., A. M. Moore, J. Zavala-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085, https://doi.org/10.1175/JCLI3596.1.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., and R. Tournier, 1991: Monitoring the 1979‐1985 equatorial Pacific current transports with expendable bathythermograph data. J. Geophys. Res., 96, 32633277, https://doi.org/10.1029/90JC02066.

    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, T. Li, and J. Su, 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894907, https://doi.org/10.1002/qj.804.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., T. G. Jensen, and M. Flatau, 2019: Characterization of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res. Oceans, 124, 20282053, https://doi.org/10.1029/2018JC014838.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and Y. Xue, 2005: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP global ocean data assimilation system. Geophys. Res. Lett., 32, L07712, https://doi.org/10.1029/2005GL022511.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and N. Chen, 2018: A tropical stochastic skeleton model for the MJO, El Niño, and dynamic Walker circulation: A simplified GCM. J. Climate, 31, 92619282, https://doi.org/10.1175/JCLI-D-18-0263.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fang, 1996: Chaotic oscillations of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 27862802, https://doi.org/10.1175/1520-0469(1996)053<2786:COOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, R., and F.-F. Jin, 2018: Two leading ENSO modes and El Niño types in the Zebiak–Cane model. J. Climate, 31, 19431962, https://doi.org/10.1175/JCLI-D-17-0469.1.

    • Search Google Scholar
    • Export Citation
  • Xing, X., X. Fang, D. Pang, and C. Ji, 2024: Seasonal variation of the sea surface temperature growth rate of ENSO. Adv. Atmos. Sci., 41, 465477, https://doi.org/10.1007/s00376-023-3005-x.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., A. J. Majda, and N. Chen, 2021: ENSO Diversity in a tropical stochastic skeleton model for the MJO, El Niño, and dynamic Walker circulation. J. Climate, 34, 34813501, https://doi.org/10.1175/JCLI-D-20-0447.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 21052112, https://doi.org/10.1002/joc.3575.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., M. M. Rienecker, and P. S. Schopf, 2004: Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. J. Geophys. Res., 109, C05019, https://doi.org/10.1029/2003JC001936.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., F.-F. Jin, and W. Zhang, 2020: A concise and effective expression relating subsurface temperature to the thermocline in the equatorial Pacific. Geophys. Res. Lett., 47, e2020GL087848, https://doi.org/10.1029/2020GL087848.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. M. Moore, and R. Kleeman, 2005: The linear response of ENSO to the Madden–Julian oscillation. J. Climate, 18, 24412459, https://doi.org/10.1175/JCLI3408.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1985: Tropical atmospheric-ocean interaction and the El Niño/Southern Oscillation phenomenon. Ph.D. thesis, Massachusetts Institute of Technology, 260 pp.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., H. H. Hendon, W. S. Kessler, and A. J. Rosati, 2001: Meeting summary: A workshop on the MJO and ENSO. Bull. Amer. Meteor. Soc., 82, 971976.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., and C. Gao, 2016: Role of subsurface entrainment temperature (Te) in the onset of El Niño events, as represented in an intermediate coupled model. Climate Dyn., 46, 14171435, https://doi.org/10.1007/s00382-015-2655-5.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., F. F. Jin, X. Long, and M. A. Cane, 2021: On the breakdown of ENSO’s relationship with thermocline depth in the central-equatorial Pacific. Geophys. Res. Lett., 48, e2020GL092335, https://doi.org/10.1029/2020GL092335.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., D. Yuan, G. Yang, J. Wang, H. Liu, R. Zhang, and W. Han, 2019: Interannual variability and dynamics of intraseasonal wind rectification in the equatorial Pacific Ocean. Climate Dyn., 52, 43514369, https://doi.org/10.1007/s00382-018-4383-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 9880 9880 7917
Full Text Views 244 244 162
PDF Downloads 126 126 63