Equatorial Pacific Cold Tongue Bias Degrades Simulation of ENSO Asymmetry due to Underestimation of Strong Eastern Pacific El Niños

Tobias Bayr aGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr, Kiel, Germany

Search for other papers by Tobias Bayr in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5429-4911
,
Joke F. Lübbecke aGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr, Kiel, Germany

Search for other papers by Joke F. Lübbecke in
Current site
Google Scholar
PubMed
Close
,
Jérôme Vialard bLOCEAN-IPSL, IRD-CNRS-Sorbonne Universités-MNHN, Paris, France

Search for other papers by Jérôme Vialard in
Current site
Google Scholar
PubMed
Close
, and
Mojib Latif aGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr, Kiel, Germany
cFaculty of Mathematics and Natural Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany

Search for other papers by Mojib Latif in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) exhibits a considerable asymmetry in sea surface temperature anomalies (SSTa), as El Niño events tend to be stronger and centered further east than La Niña events. Here, we analyze ENSO asymmetry in observations and preindustrial control integrations of 32 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Observations indicate a significant link between strong eastern Pacific (EP) El Niño events and the ENSO amplitude and asymmetry. The large CMIP6 database confirms this strong link. Most CMIP6 models suffer from an equatorial Pacific cold SST bias. This cold tongue bias hinders the southward migration of the ITCZ toward the equator over the eastern equatorial Pacific, which is characteristic of strong EP El Niño events in observations. Therefore, many models underestimate the eastern equatorial Pacific rainfall anomalies and simulate a wind stress feedback over the western Pacific that is too weak and too far west. As a result, the cold tongue bias exerts a strong control on the climate models’ ability to generate strong EP El Niño events and therefore on the ENSO overall amplitude and asymmetry. We discuss the relevance of these results in view of a potential increase of strong EP El Niño events under global warming.

Significance Statement

El Niño and La Niña are asymmetric, as El Niño events tend to be stronger and further east than La Niña events. Due to an equatorial Pacific cold tongue bias with too cold SSTs, the simulation of ENSO asymmetry is degraded in many climate models participating in CMIP6. Here, we show how the cold tongue bias influences ENSO asymmetry. The cold bias hampers the simulation of strong eastern Pacific El Niños by making it more difficult for SST to exceed the threshold for deep atmospheric convection over the eastern equatorial Pacific. Recent research indicates that climate models with a realistic ENSO asymmetry agree on the projected ENSO under global warming. The results of this study suggest that reducing the cold tongue bias has the potential to enhancing the reliability of future ENSO projections.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Bayr, tbayr@geomar.de

Abstract

El Niño–Southern Oscillation (ENSO) exhibits a considerable asymmetry in sea surface temperature anomalies (SSTa), as El Niño events tend to be stronger and centered further east than La Niña events. Here, we analyze ENSO asymmetry in observations and preindustrial control integrations of 32 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Observations indicate a significant link between strong eastern Pacific (EP) El Niño events and the ENSO amplitude and asymmetry. The large CMIP6 database confirms this strong link. Most CMIP6 models suffer from an equatorial Pacific cold SST bias. This cold tongue bias hinders the southward migration of the ITCZ toward the equator over the eastern equatorial Pacific, which is characteristic of strong EP El Niño events in observations. Therefore, many models underestimate the eastern equatorial Pacific rainfall anomalies and simulate a wind stress feedback over the western Pacific that is too weak and too far west. As a result, the cold tongue bias exerts a strong control on the climate models’ ability to generate strong EP El Niño events and therefore on the ENSO overall amplitude and asymmetry. We discuss the relevance of these results in view of a potential increase of strong EP El Niño events under global warming.

Significance Statement

El Niño and La Niña are asymmetric, as El Niño events tend to be stronger and further east than La Niña events. Due to an equatorial Pacific cold tongue bias with too cold SSTs, the simulation of ENSO asymmetry is degraded in many climate models participating in CMIP6. Here, we show how the cold tongue bias influences ENSO asymmetry. The cold bias hampers the simulation of strong eastern Pacific El Niños by making it more difficult for SST to exceed the threshold for deep atmospheric convection over the eastern equatorial Pacific. Recent research indicates that climate models with a realistic ENSO asymmetry agree on the projected ENSO under global warming. The results of this study suggest that reducing the cold tongue bias has the potential to enhancing the reliability of future ENSO projections.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Bayr, tbayr@geomar.de

Supplementary Materials

    • Supplemental Materials (PDF 6.1736 MB)
Save
  • An, S.-I., and J.-W. Kim, 2018: ENSO transition asymmetry: Internal and external causes and intermodel diversity. Geophys. Res. Lett., 45, 50955104, https://doi.org/10.1029/2018GL078476.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., E. Tziperman, Y. M. Okumura, and T. Li, 2020: ENSO irregularity and asymmetry. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 153–172, https://doi.org/10.1002/9781119548164.

  • Bayr, T., M. Latif, D. Dommenget, C. Wengel, J. Harlaß, and W. Park, 2018: Mean-state dependence of ENSO atmospheric feedbacks in climate models. Climate Dyn., 50, 31713194, https://doi.org/10.1007/s00382-017-3799-2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., C. Wengel, M. Latif, D. Dommenget, J. Lübbecke, and W. Park, 2019: Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dyn., 53, 155172, https://doi.org/10.1007/s00382-018-4575-7.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. Dommenget, and M. Latif, 2020: Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations. Climate Dyn., 54, 28312846, https://doi.org/10.1007/s00382-020-05152-2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., A. Drews, M. Latif, and J. Lübbecke, 2021: The interplay of thermodynamics and ocean dynamics during ENSO growth phase. Climate Dyn., 56, 16811697, https://doi.org/10.1007/s00382-020-05552-4.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2009: A verified estimation of the El Ninõ index Ninõ-3.4 since 1877. J. Climate, 22, 39793992, https://doi.org/10.1175/2009JCLI2724.1.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., L. Muir, E. M. Vincent, and A. Fedorov, 2017: Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dyn., 49, 20932113, https://doi.org/10.1007/s00382-016-3435-6.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, G. Wang, A. Santoso, L. Wu, and K. Yang, 2022: Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Climate Change, 12, 228231, https://doi.org/10.1038/s41558-022-01282-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2023: Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ., 4, 407418, https://doi.org/10.1038/s43017-023-00427-8.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2020: ENSO diversity. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 65–86, https://doi.org/10.1002/9781119548164.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403420, https://doi.org/10.1007/s00382-001-0188-6.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Search Google Scholar
    • Export Citation
  • Geng, T., W. Cai, L. Wu, and Y. Yang, 2019: Atmospheric convection dominates genesis of ENSO asymmetry. Geophys. Res. Lett., 46, 83878396, https://doi.org/10.1029/2019GL083213.

    • Search Google Scholar
    • Export Citation
  • Geng, T., W. Cai, and L. Wu, 2020: Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett., 47, e2020GL088784, https://doi.org/10.1029/2020GL088784.

    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Braconnot, F.-F. Jin, S. T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009a: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 56985718, https://doi.org/10.1175/2009JCLI2815.1.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009b: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2020: ENSO modeling: History, progress, and challenges. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 201–226, https://doi.org/10.1002/9781119548164.

  • Hayashi, M., and F.-F. Jin, 2017: Subsurface nonlinear dynamical heating and ENSO asymmetry. Geophys. Res. Lett., 44, 12 42712 435, https://doi.org/10.1002/2017GL075771.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and M. Watanabe, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30, 34013420, https://doi.org/10.1175/JCLI-D-16-0406.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., F.-F. Jin, and M. F. Stuecker, 2020: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and H.-L. Ren, 2017: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 7381, https://doi.org/10.1007/s13351-017-6074-x.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. NOAA National Centers for Environmental Information, accessed 24 July 2024, https://doi.org/10.7289/V5T72FNM.

  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño-La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 55565563, https://doi.org/10.1002/2015GL064853.

    • Search Google Scholar
    • Export Citation
  • Imada, Y., and M. Kimoto, 2012: Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J. Climate, 25, 45684581, https://doi.org/10.1175/JCLI-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, M. Lengaigne, and I. Suresh, 2020: Relevance of relative sea surface temperature for tropical rainfall interannual variability. Geophys. Res. Lett., 47, e2019GL086182, https://doi.org/10.1029/2019GL086182.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Li, and G. Huang, 2020: Emergent constraint on the frequency of central Pacific El Niño under global warming by the equatorial Pacific cold tongue bias in CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL089519, https://doi.org/10.1029/2020GL089519.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., F.-F. Jin, and J. L. Conroy, 2017: The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dyn., 49, 26952704, https://doi.org/10.1007/s00382-016-3475-y.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, and J.-Y. Yu, 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, https://doi.org/10.1007/s00382-013-1833-6.

    • Search Google Scholar
    • Export Citation
  • Kim, W., W. Cai, and J.-S. Kug, 2015: Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophys. Res. Lett., 42, 35833590, https://doi.org/10.1002/2015GL063886.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637, https://doi.org/10.1126/science.266.5185.634.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, https://doi.org/10.1073/pnas.0710860105.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2023: Strengthening atmospheric circulation and trade winds slowed tropical Pacific surface warming. Commun. Earth Environ., 4, 249, https://doi.org/10.1038/s43247-023-00912-4.

    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Lu, and B. Dong, 2007: The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J. Climate, 20, 51645177, https://doi.org/10.1175/JCLI4289.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, https://doi.org/10.1002/asl.227.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 12711292, https://doi.org/10.1007/s00382-010-0895-y.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 25772587, https://doi.org/10.1175/JCLI-D-13-00438.1.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2017: Symmetry of the Atlantic Niño mode. Geophys. Res. Lett., 44, 965973, https://doi.org/10.1002/2016GL071829.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: The child prodigy of 1997-98. Nature, 398, 559561, https://doi.org/10.1038/19193.

  • McPhaden, M. J., A. Santoso, and W. Cai, 2020: El Niño Southern Oscillation in a Changing Climate. Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 506 pp., https://doi.org/10.1002/9781119548164.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Nino and La Nina. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Planton, Y. Y., and Coauthors, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102, E193E217, https://doi.org/10.1175/BAMS-D-19-0337.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. Vialard, M. Lengaigne, T. Izumo, and E. Guilyardi, 2022: Relative contributions of sea surface temperature and atmospheric nonlinearities to ENSO asymmetrical rainfall response. J. Climate, 35, 37253745, https://doi.org/10.1175/JCLI-D-21-0257.1.

    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. Vialard, F. Liu, A. Voldoire, T. Izumo, E. Guilyardi, and M. Lengaigne, 2024: Dominant contribution of atmospheric nonlinearities to ENSO asymmetry and extreme El Niño events. Sci. Rep., 14, 8122, https://doi.org/10.1038/s41598-024-58803-3.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, https://doi.org/10.1007/s00382-015-2665-3.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Nino evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vannière, B., E. Guilyardi, G. Madec, F. J. Doblas-Reyes, and S. Woolnough, 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963981, https://doi.org/10.1007/s00382-012-1429-6.

    • Search Google Scholar
    • Export Citation
  • Wengel, C., M. Latif, W. Park, J. Harlaß, and T. Bayr, 2018: Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias. Climate Dyn., 50, 901919, https://doi.org/10.1007/s00382-017-3648-3.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822, https://doi.org/10.1175/2010JCLI3222.1.

    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2019: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn., 52, 18051818, https://doi.org/10.1007/s00382-018-4219-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Bayr, M. Latif, Z. Song, W. Park, and A. Reintges, 2023: Local and remote causes of the equatorial Pacific cold sea surface temperature bias in the Kiel Climate Model. J. Climate, 36, 84258442, https://doi.org/10.1175/JCLI-D-22-0874.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and D. Z. Sun, 2022: ENSO asymmetry in CMIP6 models. J. Climate, 35, 55555572, https://doi.org/10.1175/JCLI-D-21-0835.1.

  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 10202 10202 8092
Full Text Views 276 276 136
PDF Downloads 212 212 48