Interhemispheric Temperature Gradient and Equatorial Pacific SSTs Drive Sahel Monsoon Uncertainties under Global Warming

Marcellin Guilbert aLaboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Search for other papers by Marcellin Guilbert in
Current site
Google Scholar
PubMed
Close
,
Pascal Terray aLaboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Search for other papers by Pascal Terray in
Current site
Google Scholar
PubMed
Close
,
Juliette Mignot aLaboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Search for other papers by Juliette Mignot in
Current site
Google Scholar
PubMed
Close
,
Luther Ollier aLaboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Search for other papers by Luther Ollier in
Current site
Google Scholar
PubMed
Close
, and
Guillaume Gastineau aLaboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

Search for other papers by Guillaume Gastineau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Sahel is one of the most vulnerable regions to climate change. Robust estimation of future changes in the Sahel monsoon is therefore essential for effective climate change adaptation. Unfortunately, state-of-the-art climate models show large uncertainties in their projections of Sahel rainfall. In this study, we use 32 models from CMIP6 to identify the sources of this large intermodel spread of Sahel rainfall. By using maximum covariance analysis, we first highlight two new key drivers of this spread during boreal summer: the interhemispheric temperature gradient and equatorial Pacific sea surface temperature (SST) changes. This contrasts with previous studies, which have focused mainly on the Northern Hemisphere rather than the global scale, and in which the Pacific Ocean has been neglected in favor of the Atlantic. Next, we unravel the physical mechanisms behind these statistical relationships. First, the modulation of the interhemispheric temperature gradient across the models leads to varying latitudinal positions of the intertropical convergence zone and, consequently, varying Sahel rainfall intensity. Second, models that exhibit less warming than the multimodel mean in the equatorial Pacific, thereby projecting a less “El Niño–like” mean state, simulate enhanced precipitation over the central Sahel in the future through modulations of the Walker circulation, the tropical easterly jet, the meridional tropospheric temperature gradient, and hence regional zonal wind shear. Finally, we show that these two indices collectively explain 62% of Sahel rainfall change uncertainty: 40% due to the interhemispheric temperature gradient and 22% through equatorial Pacific SST.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcellin Guilbert, marcellin.guilbert@locean.ipsl.fr

Abstract

The Sahel is one of the most vulnerable regions to climate change. Robust estimation of future changes in the Sahel monsoon is therefore essential for effective climate change adaptation. Unfortunately, state-of-the-art climate models show large uncertainties in their projections of Sahel rainfall. In this study, we use 32 models from CMIP6 to identify the sources of this large intermodel spread of Sahel rainfall. By using maximum covariance analysis, we first highlight two new key drivers of this spread during boreal summer: the interhemispheric temperature gradient and equatorial Pacific sea surface temperature (SST) changes. This contrasts with previous studies, which have focused mainly on the Northern Hemisphere rather than the global scale, and in which the Pacific Ocean has been neglected in favor of the Atlantic. Next, we unravel the physical mechanisms behind these statistical relationships. First, the modulation of the interhemispheric temperature gradient across the models leads to varying latitudinal positions of the intertropical convergence zone and, consequently, varying Sahel rainfall intensity. Second, models that exhibit less warming than the multimodel mean in the equatorial Pacific, thereby projecting a less “El Niño–like” mean state, simulate enhanced precipitation over the central Sahel in the future through modulations of the Walker circulation, the tropical easterly jet, the meridional tropospheric temperature gradient, and hence regional zonal wind shear. Finally, we show that these two indices collectively explain 62% of Sahel rainfall change uncertainty: 40% due to the interhemispheric temperature gradient and 22% through equatorial Pacific SST.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcellin Guilbert, marcellin.guilbert@locean.ipsl.fr

Supplementary Materials

    • Supplemental Materials (PDF 6.0593 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Akinsanola, A. A., and W. Zhou, 2019: Ensemble-based CMIP5 simulations of West African summer monsoon rainfall: Current climate and future changes. Theor. Appl. Climatol., 136, 10211031, https://doi.org/10.1007/s00704-018-2516-3.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., F. Saeed, S. Saeed, M. Nazrul Islam, M. Ismail, N. A. B. Klutse, and M. H. Siddiqui, 2020: Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ., 4, 455475, https://doi.org/10.1007/s41748-020-00161-x.

    • Search Google Scholar
    • Export Citation
  • Azen, R., and D. V. Budescu, 2003: The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods, 8, 129148, https://doi.org/10.1037/1082-989X.8.2.129.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2019: Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdiscip. Rev.: Climate Change, 10, e591, https://doi.org/10.1002/wcc.591.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., I. M. Held, A. H. Sobel, and A. Giannini, 2008: SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J. Climate, 21, 34713486, https://doi.org/10.1175/2007JCLI1896.1.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Search Google Scholar
    • Export Citation
  • Bickle, M. E., J. H. Marsham, A. N. Ross, D. P. Rowell, D. J. Parker, and C. M. Taylor, 2021: Understanding mechanisms for trends in Sahelian squall lines: Roles of thermodynamics and shear. Quart. J. Roy. Meteor. Soc., 147, 9831006, https://doi.org/10.1002/qj.3955.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Charney, J., P. H. Stone, and W. J. Quirk, 1975: Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187, 434435, https://doi.org/10.1126/science.187.4175.434.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., P. Terray, S. B. Ratna, S. Sankar, K. Sooraj, and S. Behera, 2021: Indian Ocean Dipole influence on Indian summer monsoon and ENSO: A review. Indian Summer Monsoon Variability: El Nino Teleconnections and Beyond, J. Chowdary, A. Parekh, and C. Gnanaseelan, Eds., Elsevier, 157–182, https://doi.org/10.1016/B978-0-12-822402-1.00011-9.

  • Cherry, S., 1997: Some comments on singular value decomposition analysis. J. Climate, 10, 17591761, https://doi.org/10.1175/1520-0442(1997)010<1759:SCOSVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, https://doi.org/10.1175/2761.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566571, https://doi.org/10.1038/ngeo2988.

    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara Desert. J. Climate, 28, 65606580, https://doi.org/10.1175/JCLI-D-14-00230.1.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., P. Terray, S. Masson, K. P. Sooraj, and M. K. Roxy, 2017: Indian Ocean and Indian summer monsoon: Relationships without ENSO in ocean–atmosphere coupled simulations. Climate Dyn., 49, 14291448, https://doi.org/10.1007/s00382-016-3387-x.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dixon, R. D., D. J. Vimont, and A. S. Daloz, 2018: The relationship between tropical precipitation biases and the Saharan heat low bias in CMIP5 models. Climate Dyn., 50, 37293744, https://doi.org/10.1007/s00382-017-3838-z.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Climate Change, 5, 757760, https://doi.org/10.1038/nclimate2664.

    • Search Google Scholar
    • Export Citation
  • Douville, H., D. Salas-Mélia, and S. Tyteca, 2006: On the tropical origin of uncertainties in the global land precipitation response to global warming. Climate Dyn., 26, 367385, https://doi.org/10.1007/s00382-005-0088-2.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fisher, A., C. Rudin, and F. Dominici, 2019: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. arXiv, 1801.01489v5, https://doi.org/10.48550/arXiv.1801.01489.

  • Fredriksen, H.-B., J. Berner, A. C. Subramanian, and A. Capotondi, 2020: How does El Niño–Southern Oscillation change under global warming—A first look at CMIP6. Geophys. Res. Lett., 47, e2020GL090640, https://doi.org/10.1029/2020GL090640.

    • Search Google Scholar
    • Export Citation
  • Gaetani, M., C. Flamant, S. Bastin, S. Janicot, C. Lavaysse, F. Hourdin, P. Braconnot, and S. Bony, 2017: West African monsoon dynamics and precipitation: The competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dyn., 48, 13531373, https://doi.org/10.1007/s00382-016-3146-z.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes, 2017: Revisiting the ENSO teleconnection to the tropical North Atlantic. J. Climate, 30, 69456957, https://doi.org/10.1175/JCLI-D-16-0641.1.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., and A. Kaplan, 2019: The role of aerosols and greenhouse gases in Sahel drought and recovery. Climatic Change, 152, 449466, https://doi.org/10.1007/s10584-018-2341-9.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, and S. Nigam, 2003: Near surface westerly wind jet in the Atlantic ITCZ. Geophys. Res. Lett., 30, 2009, https://doi.org/10.1029/2003GL017867.

    • Search Google Scholar
    • Export Citation
  • Guilbert, M., P. Terray, and J. Mignot, 2023: Intermodel spread of historical Indian monsoon rainfall change in CMIP6: The role of the tropical Pacific mean-state. J. Climate, 36, 39373953, https://doi.org/10.1175/JCLI-D-22-0585.1.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2016: The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys. Res. Lett., 43, 395403, https://doi.org/10.1002/2015GL066903.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, https://doi.org/10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hill, S. A., 2019: Theories for past and future monsoon rainfall changes. Curr. Climate Change Rep., 5, 160171, https://doi.org/10.1007/s40641-019-00137-8.

    • Search Google Scholar
    • Export Citation
  • Hirasawa, H., P. J. Kushner, M. Sigmond, J. Fyfe, and C. Deser, 2020: Anthropogenic aerosols dominate forced multidecadal Sahel precipitation change through distinct atmospheric and oceanic drivers. J. Climate, 33, 10 18710 204, https://doi.org/10.1175/JCLI-D-19-0829.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, https://doi.org/10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., and Coauthors, 2011: Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett., 12, 5866, https://doi.org/10.1002/asl.280.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., and Coauthors, 2015: The recent partial recovery in Sahel rainfall: A fingerprint of greenhouse gases forcing? GEWEX News, Vol. 27, International GEWEX Project Office, Silver Spring, MD, 11–15, https://futureclimateafrica.org/wp-content/uploads/2018/07/janicot-etal-2015-the-recent-partial-recovery-in-sahel-rainfall-a-fingerprint-of-greenhouse-gases-forcing_.pdf.

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joly, M., and A. Voldoire, 2009: Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes. J. Climate, 22, 31933210, https://doi.org/10.1175/2008JCLI2450.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Search Google Scholar
    • Export Citation
  • Kent, C., R. Chadwick, and D. P. Rowell, 2015: Understanding uncertainties in future projections of seasonal tropical precipitation. J. Climate, 28, 43904413, https://doi.org/10.1175/JCLI-D-14-00613.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., N. Zeng, and E. Kalnay, 2013: A further assessment of vegetation feedback on decadal Sahel rainfall variability. Climate Dyn., 40, 14531466, https://doi.org/10.1007/s00382-012-1397-x.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and A. Ali, 2009: Recent trends in the central and western Sahel rainfall regime (1990–2007). J. Hydrol., 375, 5264, https://doi.org/10.1016/j.jhydrol.2008.11.030.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, J. Ying, P. Huang, and Y. Tang, 2019: Tropical Pacific trends under global warming: El Niño-like or La Niña-like? Natl. Sci. Rev., 5, 810812, https://doi.org/10.1093/nsr/nwy134.

    • Search Google Scholar
    • Export Citation
  • Madhavan, M., L. P. Ravisankar, K. Thirumalai, and R. Ramesh, 2022: Coherent Indian summer monsoon and Sahel rainfall variability revealed by Ethiopian rainfall δ18O. J. Geophys. Res. Atmos., 127, e2022JD037160, https://doi.org/10.1029/2022JD037160.

    • Search Google Scholar
    • Export Citation
  • Marathe, S., P. Terray, and A. Karumuri, 2021: Tropical Indian Ocean and ENSO relationships in a changed climate. Climate Dyn., 56, 32553276, https://doi.org/10.1007/s00382-021-05641-y.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. D. Thorncroft, 2014: The impact of the AMO on the West African monsoon annual cycle. Quart. J. Roy. Meteor. Soc., 140, 3146, https://doi.org/10.1002/qj.2107.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. D. Thorncroft, and B. B. B. Booth, 2014: The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784806, https://doi.org/10.1175/JCLI-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Biasutti, and C. Bonfils, 2020: Fingerprints of external forcings on Sahel rainfall: Aerosols, greenhouse gases, and model-observation discrepancies. Environ. Res. Lett., 15, 084023, https://doi.org/10.1088/1748-9326/ab858e.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, and M. Collins, 2018: Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Climate Change, 8, 493498, https://doi.org/10.1038/s41558-018-0163-4.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.-F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., B. Fontaine, and P. Roucou, 2013: Mid-century effects of climate change on African monsoon dynamics using the A1B emission scenario. Int. J. Climatol., 33, 881896, https://doi.org/10.1002/joc.3476.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., E. Sanchez-Gomez, and J. Boé, 2017a: On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies. Climate Dyn., 48, 27512770, https://doi.org/10.1007/s00382-016-3236-y.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., E. Sanchez-Gomez, B. Pohl, J. Robson, and B. Dong, 2017b: Impact of internal variability on projections of Sahel precipitation change. Environ. Res. Lett., 12, 114003, https://doi.org/10.1088/1748-9326/aa8cda.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., E. Sanchez-Gomez, M. Gaetani, E. Mohino, and B. Dong, 2020a: Future evolution of the Sahel precipitation zonal contrast in CESM1. Climate Dyn., 55, 28012821, https://doi.org/10.1007/s00382-020-05417-w.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., C. M. Wainwright, M. Sidibe, and A. A. Akinsanola, 2020b: Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Climate Dyn., 55, 13851401, https://doi.org/10.1007/s00382-020-05332-0.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., B. Pohl, and M. Gaetani, 2021: The fast response of Sahel precipitation to climate change allows effective mitigation action. npj Climate Atmos. Sci., 4, 24, https://doi.org/10.1038/s41612-021-00179-6.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., L. J. Wilcox, and A. G. Turner, 2022: Effects of anthropogenic aerosol and greenhouse gas emissions on Northern Hemisphere monsoon precipitation: Mechanisms and uncertainty. J. Climate, 35, 23052326, https://doi.org/10.1175/JCLI-D-21-0412.1.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., M. Biasutti, J. Mignot, E. Mohino, B. Pohl, and G. Zappa, 2023: Storylines of Sahel precipitation change: Roles of the North Atlantic and Euro-Mediterranean temperature. J. Geophys. Res. Atmos., 128, e2023JD038712, https://doi.org/10.1029/2023JD038712.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, T., Y. Tachibana, and Y. Ando, 2021: Possible semi-circumglobal teleconnection across Eurasia driven by deep convection over the Sahel. Climate Dyn., 57, 22872299, https://doi.org/10.1007/s00382-021-05804-x.

    • Search Google Scholar
    • Export Citation
  • Ndiaye, C. D., E. Mohino, J. Mignot, and S. M. Sall, 2022: On the detection of externally forced decadal modulations of the Sahel rainfall over the whole twentieth century in the CMIP6 ensemble. J. Climate, 35, 69396954, https://doi.org/10.1175/JCLI-D-21-0585.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171, https://doi.org/10.1007/s00382-008-0514-3.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, https://doi.org/10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2015: Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun., 6, 5985, https://doi.org/10.1038/ncomms6985.

    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2016: Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Climate Change, 6, 941945, https://doi.org/10.1038/nclimate3065.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and K. H. Cook, 2010: Dynamics of the West African westerly jet. J. Climate, 23, 62636276, https://doi.org/10.1175/2010JCLI3648.1.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and K. H. Cook, 2012: Role of the West African westerly jet in Sahel rainfall variations. J. Climate, 25, 28802896, https://doi.org/10.1175/JCLI-D-11-00394.1.

    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, https://doi.org/10.1175/JCLI-D-12-00505.1.

    • Search Google Scholar
    • Export Citation
  • Roy, I., R. G. Tedeschi, and M. Collins, 2019: ENSO teleconnections to the Indian summer monsoon under changing climate. Int. J. Climatol., 39, 30313042, https://doi.org/10.1002/joc.5999.

    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, V., 2005: Large scale reduction in the size of the tropical easterly jet. Geophys. Res. Lett., 32, L14802, https://doi.org/10.1029/2005GL022956.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Seth, A., A. Giannini, M. Rojas, S. A. Rauscher, S. Bordoni, D. Singh, and S. J. Camargo, 2019: Monsoon responses to climate changes—Connecting past, present and future. Curr. Climate Change Rep., 5, 6379, https://doi.org/10.1007/s40641-019-00125-y.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2007: Summertime ENSO–North African–Asian jet teleconnection and implications for the Indian monsoons. Geophys. Res. Lett., 34, L11702, https://doi.org/10.1029/2006GL029143.

    • Search Google Scholar
    • Export Citation
  • Shekhar, R., and W. R. Boos, 2017: Weakening and shifting of the Saharan shallow meridional circulation during wet years of the West African monsoon. J. Climate, 30, 73997422, https://doi.org/10.1175/JCLI-D-16-0696.1.

    • Search Google Scholar
    • Export Citation
  • Sooraj, K. P., P. Terray, S. Masson, and J. Crétat, 2019: Modulations of the Indian summer monsoon by the hot subtropical deserts: Insights from coupled sensitivity experiments. Climate Dyn., 52, 45274555, https://doi.org/10.1007/s00382-018-4396-8.

    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 34073427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., and M. Gaetani, 2016: Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci., 7, 1262, https://doi.org/10.3389/fpls.2016.01262.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., P. M. Nikiema, P. Gibba, I. Kebe, and N. A. B. Klutse, 2016: Climate change over West Africa: Recent trends and future projections. Adaptation to Climate Change and Variability in Rural West Africa, J. A. Yaro and J. Hesselberg, Eds., Springer, 25–40.

  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269, https://doi.org/10.3402/tellusa.v56i3.14410.

    • Search Google Scholar
    • Export Citation
  • Tao, W., X. Kong, L. Yong, Y. Wang, and D. Danhong, 2022: Diversity of northwest Pacific atmospheric circulation anomalies during post-ENSO summer. Front. Environ. Sci., 10, 1068155, https://doi.org/10.3389/fenvs.2022.1068155.

    • Search Google Scholar
    • Export Citation
  • Terray, P., K. P. Sooraj, S. Masson, R. P. M. Krishna, G. Samson, and A. G. Prajeesh, 2018: Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the-art coupled models: Role of the background snow-free land albedo. Climate Dyn., 50, 34133439, https://doi.org/10.1007/s00382-017-3812-9.

    • Search Google Scholar
    • Export Citation
  • Terray, P., K. P. Sooraj, S. Masson, and C. Prodhomme, 2021: Anatomy of the Indian summer monsoon and ENSO relationships in state-of-the-art CGCMs: Role of the tropical Indian Ocean. Climate Dyn., 56, 329356, https://doi.org/10.1007/s00382-020-05484-z.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, https://doi.org/10.1175/JCLI-D-13-00205.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, N., L. Zhou, Y. Dai, G. Xia, and W. Hua, 2017: Observational evidence for desert amplification using multiple satellite datasets. Sci. Rep., 7, 2043, https://doi.org/10.1038/s41598-017-02064-w.

    • Search Google Scholar
    • Export Citation
  • Whittleston, D., S. E. Nicholson, A. Schlosser, and D. Entekhabi, 2017: Climate models lack jet–rainfall coupling over West Africa. J. Climate, 30, 46254632, https://doi.org/10.1175/JCLI-D-16-0579.1.

    • Search Google Scholar
    • Export Citation
  • Yan, Y., R. Lu, and C. Li, 2019: Relationship between the future projections of Sahel rainfall and the simulation biases of present South Asian and western North Pacific rainfall in summer. J. Climate, 32, 13271343, https://doi.org/10.1175/JCLI-D-17-0846.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and G. Li, 2022: Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Climate Dyn., 59, 35793597, https://doi.org/10.1007/s00382-022-06284-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 441 441 21
Full Text Views 142 141 10
PDF Downloads 191 191 16