MJO-Induced Warm Pool Eastward Extension Prior to the Onset of El Niño: Observations from 1998 to 2019

Yakelyn R. Jauregui aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Yakelyn R. Jauregui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3567-6695
and
Shuyi S. Chen aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Shuyi S. Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1879-1088
Restricted access

Abstract

The Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO) are the two most important tropical phenomena that affect global weather and climate on intraseasonal and interannual time scales. Although they occur on different time scales, the MJO-induced sea surface temperature (SST) anomalies over the equatorial Pacific have spatial scales similar to SST anomalies prior to El Niño. This study aims to address the question of whether the MJO plays an important role in the warm pool eastward extension (WPEE) leading up to El Niño. We use over 20 years of satellite observations, including optimum interpolated SST, TRMM-GPM precipitation, and the cross-calibrated multiplatform (CCMP) surface winds from 1998 to 2019, to quantify the spatial structure and duration of the MJO-induced warm SST anomalies over the equatorial Pacific (10°S–10°N, 130°E–180°). The intensity of the MJO is measured by the total rain volume and average surface westerly wind speed throughout its convectively active phase. Results show that 1) 61% of the 98 MJO events induced a WPEE over 1000–3000 km along the equator, which can last beyond 15–30 days after the MJO precipitation ended; 2) the MJO events prior to El Niño are generally stronger and produce significant WPEE far beyond its annual cycle and increasing SST warming in the Niño-3.4 region; 3) consecutive MJO events can produce much stronger WPEE prior to El Niño, which are observed in all El Niño events from 1998 to 2019; and 4) more frequent and stronger MJO-induced WPEE occurs in March–May than other seasons. These results can help better understand the MJO–ENSO interaction and, ultimately, improve the prediction of El Niño onset.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yakelyn R. Jauregui, yakelynr@uw.edu

Abstract

The Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO) are the two most important tropical phenomena that affect global weather and climate on intraseasonal and interannual time scales. Although they occur on different time scales, the MJO-induced sea surface temperature (SST) anomalies over the equatorial Pacific have spatial scales similar to SST anomalies prior to El Niño. This study aims to address the question of whether the MJO plays an important role in the warm pool eastward extension (WPEE) leading up to El Niño. We use over 20 years of satellite observations, including optimum interpolated SST, TRMM-GPM precipitation, and the cross-calibrated multiplatform (CCMP) surface winds from 1998 to 2019, to quantify the spatial structure and duration of the MJO-induced warm SST anomalies over the equatorial Pacific (10°S–10°N, 130°E–180°). The intensity of the MJO is measured by the total rain volume and average surface westerly wind speed throughout its convectively active phase. Results show that 1) 61% of the 98 MJO events induced a WPEE over 1000–3000 km along the equator, which can last beyond 15–30 days after the MJO precipitation ended; 2) the MJO events prior to El Niño are generally stronger and produce significant WPEE far beyond its annual cycle and increasing SST warming in the Niño-3.4 region; 3) consecutive MJO events can produce much stronger WPEE prior to El Niño, which are observed in all El Niño events from 1998 to 2019; and 4) more frequent and stronger MJO-induced WPEE occurs in March–May than other seasons. These results can help better understand the MJO–ENSO interaction and, ultimately, improve the prediction of El Niño onset.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yakelyn R. Jauregui, yakelynr@uw.edu
Save
  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085, https://doi.org/10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., J. Ardizzone, and R. N. Hoffman, 2008: Application of satellite surface wind data to ocean wind analysis. Proc. SPIE, 7087, 70870B, https://doi.org/10.1117/12.795371.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 17021719, https://doi.org/10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosc, C., T. Delcroix, and C. Maes, 2009: Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J. Geophys. Res., 114, C06023, https://doi.org/10.1029/2008JC005187.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., C. Langlais, and C. Maes, 2014: Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Climate Dyn., 42, 30613076, https://doi.org/10.1007/s00382-013-1931-5.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997a: Diurnal variation and lifecycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997b: Interannual variability of deep convection over the tropical warm pool. J. Geophys. Res., 102, 25 78325 795, https://doi.org/10.1029/97JD02238.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 36193642, https://doi.org/10.1175/JCLI-D-13-00547.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., J. Wang, and S. V. Gorder, 2000: A simple warm-pool displacement ENSO Model. J. Phys. Oceanogr., 30, 16791691, https://doi.org/10.1175/1520-0485(2000)030<1679:ASWPDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and C. Hénin, 1991: Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res., 96, 22 13522 150, https://doi.org/10.1029/91JC02124.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., H. Bellenger, E. Guilyardi, M. Lengaigne, J. Vialard, and G. Madec, 2015: Processes driving intraseasonal displacements of the eastern edge of the warm pool: The contribution of westerly wind events. Climate Dyn., 44, 735755, https://doi.org/10.1007/s00382-014-2297-z.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, and J. D. Glick, 1998: Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55, 88101, https://doi.org/10.1175/1520-0469(1998)055<0088:OKWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, D. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jauregui, Y. R., and K. Takahashi, 2018: Simple physical-empirical model of the precipitation distribution based on a tropical sea surface temperature threshold and the effects of climate change. Climate Dyn., 50, 22172237, https://doi.org/10.1007/s00382-017-3745-3.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2014: A explosive convective cloud system and its environmental conditions in MJO initiation observed during DYNAMO. J. Geophys. Res. Atmos., 119, 27812795, https://doi.org/10.1002/2013JD021048.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. J. Geophys. Res. Atmos., 121, 87558776, https://doi.org/10.1002/2015JD024661.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2020: A 20-year climatology of Madden-Julian Oscillation convection: Large-scale precipitation tracking from TRMM-GPM rainfall. J. Geophys. Res. Atmos., 125, e2019JD032142, https://doi.org/10.1029/2019JD032142.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2021: Impacts of precipitation-evaporation-salinity coupling on upper ocean stratification and momentum over the tropical Pacific prior to onset of the 2018 El Niño. Ocean Modell., 168, 101892, https://doi.org/10.1016/j.ocemod.2021.101892.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, https://doi.org/10.1029/95JC00382.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., K.-P. Sooraj, T. Li, and F.-F. Jin, 2010: Precursors of the El Niño/La Niña onset and their interrelationship. J. Geophys. Res., 115, D05106, https://doi.org/10.1029/2009JD012861.

    • Search Google Scholar
    • Export Citation
  • Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. von Storch, J.-S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167179, https://doi.org/10.1007/BF00208250.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1988: Intraseasonal and interannual variations of tropical convection: A possible link between the 40–50 day oscillation and ENSO? J. Atmos. Sci., 45, 506521, https://doi.org/10.1175/1520-0469(1988)045<0506:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delecluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly wind event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 33303343, https://doi.org/10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maes, C., and S. Belamari, 2011: On the impact of salinity barrier layer on the Pacific Ocean mean state and ENSO. SOLA, 7, 97100, https://doi.org/10.2151/sola.2011-025.

    • Search Google Scholar
    • Export Citation
  • Maes, C., M. J. McPhaden, and D. Behringer, 2002: Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. J. Geophys. Res., 107, 8012, https://doi.org/10.1029/2000JC000737.

    • Search Google Scholar
    • Export Citation
  • Maes, C., J. Picaut, and S. Belamari, 2005: Importance of the salinity barrier layer for the buildup of El Niño. J. Climate, 18, 104118, https://doi.org/10.1175/JCLI-3214.1.

    • Search Google Scholar
    • Export Citation
  • Maes, C., K. Ando, T. Delcroix, W. S. Kessler, M. J. McPhaden, and D. Roemmich, 2006: Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys. Res. Lett., 33, L06601, https://doi.org/10.1029/2005GL024772.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677696, https://doi.org/10.1175/BAMS-85-5-677.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791795, https://doi.org/10.1038/nclimate2775.

  • McPhaden, M. J., and J. Picaut, 1990: El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool. Science, 250, 13851388, https://doi.org/10.1126/science.250.4986.1385.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006a: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., X. Zhang, H. Hendon, and M. Wheeler, 2006b: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, https://doi.org/10.1029/2006GL026786.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, https://doi.org/10.1256/003590002320603502.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. S. Chen, and R. A. Houze Jr., 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132A, 709736, https://doi.org/10.1256/qj.04.141.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: El Niño and La Niña alert system. NOAA, accessed 10 December 2022, https://www.climate.gov/news-features/understanding-climate/el-ni%C3%B1o-and-la-ni%C3%B1a-alert-system.

  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604613, https://doi.org/10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., and T. Delcroix, 1995: Equatorial wave sequence associated with warm pool displacements during the 1986–1989 El Niño–La Niña. J. Geophys. Res., 100, 18 39318 408, https://doi.org/10.1029/95JC01358.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., M. Ioualalen, T. Delcroix, F. Masia, R. Murtugudde, and J. Vialard, 2001: The oceanic zone of convergence on the eastern edge of the Pacific warm pool: A synthesis of results and implications for El Niño–Southern Oscillation and biogeochemical phenomena. J. Geophys. Res., 106, 23632386, https://doi.org/10.1029/2000JC900141.

    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian Oscillation and convectively coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Search Google Scholar
    • Export Citation
  • Ralph, E. A., K. Bi, P. P. Niiler, and Y. du Penhoat, 1997: A Lagrangian description of the western equatorial Pacific response to the wind burst of December 1992: Heat advection in the warm pool. J. Climate, 10, 17061721, https://doi.org/10.1175/1520-0442(1997)010<1706:ALDOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Savarin, A., and S. S. Chen, 2022a: Pathways to better prediction of the MJO: 1. Effects of model resolution and moist physics on atmospheric boundary layer and precipitation. J. Adv. Model. Earth Syst., 14, e2021MS002928, https://doi.org/10.1029/2021MS002928.

    • Search Google Scholar
    • Export Citation
  • Savarin, A., and S. S. Chen, 2022b: Pathways to better prediction of the MJO: 2. Impacts of atmosphere-ocean coupling on the upper ocean and MJO propagation. J. Adv. Model. Earth Syst., 14, e2021MS002929, https://doi.org/10.1029/2021MS002929.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 2001: Upper-ocean heat budget in response to the Madden–Julian oscillation in the western equatorial Pacific. J. Climate, 14, 41474165, https://doi.org/10.1175/1520-0442(2001)014<4147:UOHBIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, A., and T. Delcroix, 2013: Eastern and Central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep Sea Res. I, 82, 3243, https://doi.org/10.1016/j.dsr.2013.08.002.

    • Search Google Scholar
    • Export Citation
  • Su, H., C. S. Bretherton, and S. S. Chen, 2000: Self-aggregation and large-scale control of tropical deep convection: A modeling study. J. Atmos. Sci., 57, 17971816, https://doi.org/10.1175/1520-0469(2000)057<1797:SAALSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., and K. Takeuchi, 2000: Response of equatorial Pacific mean temperature field to intraseasonal wind forcing. J. Oceanogr., 56, 485494, https://doi.org/10.1023/A:1011140708962.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and P. Delecluse, 1998: An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J. Phys. Oceanogr., 28, 10891106, https://doi.org/10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshida, K., 1959: A theory of the Cromwell Current (the Equatorial Undercurrent) and of the equatorial upwelling. J. Oceanogr. Soc. Japan, 15, 159170, https://doi.org/10.5928/kaiyou1942.15.159.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., H. Hendon, W. Kessler, and A. Rosati, 2001: A workshop on the MJO and ENSO. Bull. Amer. Meteor. Soc., 82, 971976.

  • Zhao, M., H. H. Hendon, O. Alves, G. Liu, and G. Wang, 2016: Weakened eastern Pacific El Niño predictability in the early twenty-first century. J. Climate, 29, 68056822, https://doi.org/10.1175/JCLI-D-15-0876.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 857 660 72
Full Text Views 312 245 14
PDF Downloads 311 241 7