Severe Global Cooling After Volcanic Super-Eruptions? The Answer Hinges on Unknown Aerosol Size

Zachary McGraw aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Zachary McGraw in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0964-3996
,
Kevin DallaSanta aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Kevin DallaSanta in
Current site
Google Scholar
PubMed
Close
,
Lorenzo M. Polvani aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
cDepartment of Earth and Environmental Sciences, Columbia University, New York, New York
dDivision of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
,
Kostas Tsigaridis eCenter for Climate Systems Research, Columbia University, New York, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Kostas Tsigaridis in
Current site
Google Scholar
PubMed
Close
,
Clara Orbe bNASA Goddard Institute for Space Studies, New York, New York
aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
, and
Susanne E. Bauer bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Susanne E. Bauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Volcanic super-eruptions have been theorized to cause severe global cooling, with the 74 kya Toba eruption purported to have driven humanity to near-extinction. However, this eruption left little physical evidence of its severity and models diverge greatly on the magnitude of post-eruption cooling. A key factor controlling the super-eruption climate response is the size of volcanic sulfate aerosol, a quantity that left no physical record and is poorly constrained by models. Here we show that this knowledge gap severely limits confidence in model-based estimates of super-volcanic cooling, and accounts for much of the disagreement among prior studies. By simulating super-eruptions over a range of aerosol sizes, we obtain global mean responses varying from extreme cooling all the way to the previously unexplored scenario of widespread warming. We also use an interactive aerosol model to evaluate the scaling between injected sulfur mass and aerosol size. Combining our model results with the available paleoclimate constraints applicable to large eruptions, we estimate that global volcanic cooling is unlikely to exceed 1.5°C no matter how massive the stratospheric injection. Super-eruptions, we conclude, may be incapable of altering global temperatures substantially more than the largest Common Era eruptions. This lack of exceptional cooling could explain why no single super-eruption event has resulted in firm evidence of widespread catastrophe for humans or ecosystems.

Significance Statement

Whether volcanic super-eruptions pose a threat to humanity remains a subject of debate, with climate models disagreeing on the magnitude of global post-eruption cooling. We demonstrate that this disagreement primarily stems from a lack of constraint on the size of volcanic sulfate aerosol particles. By evaluating the range of aerosol size scenarios, we demonstrate that eruptions may be incapable of causing more than 1.5°C cooling no matter how much sulfur they inject into the stratosphere. This could explain why archaeological records provide no evidence of increased human mortality following the Toba super-eruption. Further, we raise the unexplored possibility that the largest super-eruptions could cause global-scale warming.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zachary McGraw, zachary.mcgraw@columbia.edu

Abstract

Volcanic super-eruptions have been theorized to cause severe global cooling, with the 74 kya Toba eruption purported to have driven humanity to near-extinction. However, this eruption left little physical evidence of its severity and models diverge greatly on the magnitude of post-eruption cooling. A key factor controlling the super-eruption climate response is the size of volcanic sulfate aerosol, a quantity that left no physical record and is poorly constrained by models. Here we show that this knowledge gap severely limits confidence in model-based estimates of super-volcanic cooling, and accounts for much of the disagreement among prior studies. By simulating super-eruptions over a range of aerosol sizes, we obtain global mean responses varying from extreme cooling all the way to the previously unexplored scenario of widespread warming. We also use an interactive aerosol model to evaluate the scaling between injected sulfur mass and aerosol size. Combining our model results with the available paleoclimate constraints applicable to large eruptions, we estimate that global volcanic cooling is unlikely to exceed 1.5°C no matter how massive the stratospheric injection. Super-eruptions, we conclude, may be incapable of altering global temperatures substantially more than the largest Common Era eruptions. This lack of exceptional cooling could explain why no single super-eruption event has resulted in firm evidence of widespread catastrophe for humans or ecosystems.

Significance Statement

Whether volcanic super-eruptions pose a threat to humanity remains a subject of debate, with climate models disagreeing on the magnitude of global post-eruption cooling. We demonstrate that this disagreement primarily stems from a lack of constraint on the size of volcanic sulfate aerosol particles. By evaluating the range of aerosol size scenarios, we demonstrate that eruptions may be incapable of causing more than 1.5°C cooling no matter how much sulfur they inject into the stratosphere. This could explain why archaeological records provide no evidence of increased human mortality following the Toba super-eruption. Further, we raise the unexplored possibility that the largest super-eruptions could cause global-scale warming.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zachary McGraw, zachary.mcgraw@columbia.edu
Save
  • Ambrose, S. H., 1998: Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol., 34, 623651, https://doi.org/10.1006/jhev.1998.0219.

    • Search Google Scholar
    • Export Citation
  • Aubry, T. J., M. Toohey, L. Marshall, A. Schmidt, and A. M. Jellinek, 2020: A new volcanic stratospheric sulfate aerosol forcing emulator (EVA_H): Comparison with interactive stratospheric aerosol models. J. Geophys. Res. Atmos., 125, e2019JD031303, https://doi.org/10.1029/2019JD031303.

    • Search Google Scholar
    • Export Citation
  • Aubry, T. J., J. Staunton-Sykes, L. R. Marshall, J. Haywood, N. L. Abraham, and A. Schmidt, 2021: Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions. Nat. Commun., 12, 4708, https://doi.org/10.1038/s41467-021-24943-7.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., D. L. Wright, D. Koch, E. R. Lewis, R. McGraw, L.-S. Chang, S. E. Schwartz, and R. Ruedy, 2008: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): An aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys., 8, 60036035, https://doi.org/10.5194/acp-8-6003-2008.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., and Coauthors, 2020: Historical (1850–2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001978, https://doi.org/10.1029/2019MS001978.

    • Search Google Scholar
    • Export Citation
  • Bingen, C., D. Fussen, and F. Vanhellemont, 2004: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations. J. Geophys. Res., 109, D06201, https://doi.org/10.1029/2003JD003518.

    • Search Google Scholar
    • Export Citation
  • Black, B. A., J.-F. Lamarque, D. R. Marsh, A. Schmidt, and C. G. Bardeen, 2021: Global climate disruption and regional climate shelters after the Toba supereruption. Proc. Natl. Acad. Sci. USA, 118, e2013046118, https://doi.org/10.1073/pnas.2013046118.

    • Search Google Scholar
    • Export Citation
  • Brenna, H., S. Kutterolf, M. J. Mills, and K. Krüger, 2020: The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate. Atmos. Chem. Phys., 20, 65216539, https://doi.org/10.5194/acp-20-6521-2020.

    • Search Google Scholar
    • Export Citation
  • Brown, K. S., and Coauthors, 2012: An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature, 491, 590593, https://doi.org/10.1038/nature11660.

    • Search Google Scholar
    • Export Citation
  • Chan, T. W., and M. Mozurkewich, 2001: Measurement of the coagulation rate constant for sulfuric acid particles as a function of particle size using tandem differential mobility analysis. J. Aerosol Sci., 32, 321339, https://doi.org/10.1016/S0021-8502(00)00081-1.

    • Search Google Scholar
    • Export Citation
  • Clarkson, C., and Coauthors, 2020: Human occupation of northern India spans the Toba super-eruption ∼74,000 years ago. Nat. Commun., 11, 961, https://doi.org/10.1038/s41467-020-14668-4.

    • Search Google Scholar
    • Export Citation
  • Clyne, M., and Coauthors, 2021: Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora interactive stratospheric aerosol ensemble. Atmos. Chem. Phys., 21, 33173343, https://doi.org/10.5194/acp-21-3317-2021.

    • Search Google Scholar
    • Export Citation
  • Costa, A., V. C. Smith, G. Macedonio, and N. E. Matthews, 2014: The magnitude and impact of the youngest Toba tuff super-eruption. Front. Earth Sci., 2, 16, https://doi.org/10.3389/feart.2014.00016.

    • Search Google Scholar
    • Export Citation
  • Crick, L., and Coauthors, 2021: New insights into the ∼74 ka Toba eruption from sulfur isotopes of polar ice cores. Climate Past, 17, 21192137, https://doi.org/10.5194/cp-17-2119-2021.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., and M. B. Unterman, 2013: Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data, 5, 187197, https://doi.org/10.5194/essd-5-187-2013.

    • Search Google Scholar
    • Export Citation
  • DallaSanta, K., and L. M. Polvani, 2022: Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability. Atmos. Chem. Phys., 22, 88438862, https://doi.org/10.5194/acp-22-8843-2022.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., 1994: In situ measurements of Pinatubo aerosol over Kiruna on four days between 18 January and 13 February 1992. Geophys. Res. Lett., 21, 13231326, https://doi.org/10.1029/93GL03227.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., J. B. Liley, G. Bodeker, W. A. Matthews, and D. J. Hoffmann, 1997: Stratospheric aerosol following Pinatubo, comparison of the north and south mid latitudes using in situ measurements. Adv. Space Res., 20, 20892095, https://doi.org/10.1016/S0273-1177(97)00600-5.

    • Search Google Scholar
    • Export Citation
  • English, J. M., O. B. Toon, and M. J. Mills, 2013: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res. Atmos., 118, 18801895, https://doi.org/10.1002/jgrd.50196.

    • Search Google Scholar
    • Export Citation
  • Goodman, J., K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, and S. Verma, 1994: Evolution of Pinatubo aerosol near 19 km altitude over western North America. Geophys. Res. Lett., 21, 11291132, https://doi.org/10.1029/94GL00696.

    • Search Google Scholar
    • Export Citation
  • Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 20352038, https://doi.org/10.1126/science.1078366.

    • Search Google Scholar
    • Export Citation
  • Guillet, S., and Coauthors, 2017: Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci., 10, 123128, https://doi.org/10.1038/ngeo2875.

    • Search Google Scholar
    • Export Citation
  • Guo, S., G. J. S. Bluth, W. I. Rose, I. M. Watson, and A. J. Prata, 2004: Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst., 5, Q04001, https://doi.org/10.1029/2003GC000654.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

    • Search Google Scholar
    • Export Citation
  • IACETH, 2017: CMIP6 Stratospheric Aerosol Dataset (SAD) v3. Institute for Atmosphere and Climate, ETH Zurich, Earth System Grid Federation, accessed 1 December 2022, https://doi.org/10.22033/ESGF/input4MIPs.1681.

  • Kremser, S., and Coauthors, 2016: Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys., 54, 278335, https://doi.org/10.1002/2015RG000511.

    • Search Google Scholar
    • Export Citation
  • Lacis, A., J. Hansen, and M. Sato, 1992: Climate forcing by stratospheric aerosols. Geophys. Res. Lett., 19, 16071610, https://doi.org/10.1029/92GL01620.

    • Search Google Scholar
    • Export Citation
  • Lane, C. S., B. T. Chorn, and T. C. Johnson, 2013: Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proc. Natl. Acad. Sci. USA, 110, 80258029, https://doi.org/10.1073/pnas.1301474110.

    • Search Google Scholar
    • Export Citation
  • Lavigne, F., and Coauthors, 2013: Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc. Natl. Acad. Sci. USA, 110, 16 74216 747, https://doi.org/10.1073/pnas.1307520110.

    • Search Google Scholar
    • Export Citation
  • Manning, J. G., F. Ludlow, A. R. Stine, W. R. Boos, M. Sigl, and J. R. Marlon, 2017: Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nat. Commun., 8, 900, https://doi.org/10.1038/s41467-017-00957-y.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., and Coauthors, 2020: Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom. Proc. Natl. Acad. Sci. USA, 117, 15 44315 449, https://doi.org/10.1073/pnas.2002722117.

    • Search Google Scholar
    • Export Citation
  • Mills, M. J., and Coauthors, 2016: Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J. Geophys. Res. Atmos., 121, 23322348, https://doi.org/10.1002/2015JD024290.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—2. Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151.

    • Search Google Scholar
    • Export Citation
  • Osipov, S., G. Stenchikov, K. Tsigaridis, A. N. LeGrande, and S. E. Bauer, 2020: The role of the SO2 radiative effect in sustaining the volcanic winter and soothing the Toba impact on climate. J. Geophys. Res. Atmos., 125, e2019JD031726, https://doi.org/10.1029/2019JD031726.

    • Search Google Scholar
    • Export Citation
  • Petraglia, M., and Coauthors, 2007: Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science, 317, 114116, https://doi.org/10.1126/science.1141564.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. P., R. P. Turco, and O. B. Toon, 1989: Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res., 94, 11 16511 174, https://doi.org/10.1029/JD094iD08p11165.

    • Search Google Scholar
    • Export Citation
  • Pueschel, R. F., P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, and S. Verma, 1994: Physical and optical properties of the Pinatubo volcanic aerosol: Aircraft observations with impactors and a sun-tracking photometer. J. Geophys. Res., 99, 12 91512 922, https://doi.org/10.1029/94JD00621.

    • Search Google Scholar
    • Export Citation
  • Rampino, M. R., and S. Self, 1992: Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 5052, https://doi.org/10.1038/359050a0.

    • Search Google Scholar
    • Export Citation
  • Rampino, M. R., and S. H. Ambrose, 2000: Volcanic winter in the Garden of Eden: The Toba super-eruption and the late Pleistocene human population crash. Volcanic Hazards and Disasters in Human Antiquity, F. W. McCoy and G. Heiken, Eds., Special Paper 345, Geological Society of America, 71–82.

  • Rind, D., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—Model structure, climatology, variability, and climate sensitivity. J. Geophys. Res. Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204.

    • Search Google Scholar
    • Export Citation
  • Robock, A., C. M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov, 2009: Did the Toba volcanic eruption of ∼74 ka B.P. produce widespread glaciation? J. Geophys. Res., 114, D10107, https://doi.org/10.1029/2008JD011652.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, A. Lacis, M. P. McCormick, J. B. Pollack, L. Thomason, and A. Bourassa, 2012: Stratospheric aerosol optical thickness in the GISS climate model. NASA, accessed 1 December 2022, https://data.giss.nasa.gov/modelforce/strataer/.

  • Schneider, L., J. E. Smerdon, U. Büntgen, R. J. S. Wilson, V. S. Myglan, A. V. Kirdyanov, and J. Esper, 2015: Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett., 42, 45564562, https://doi.org/10.1002/2015GL063956.

    • Search Google Scholar
    • Export Citation
  • Sekiya, T., K. Sudo, and T. Nagai, 2016: Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes. J. Geophys. Res. Atmos., 121, 29112938, https://doi.org/10.1002/2015JD024313.

    • Search Google Scholar
    • Export Citation
  • Sioris, C. E., A. Malo, C. A. McLinden, and R. D’Amours, 2016: Direct injection of water vapor into the stratosphere by volcanic eruptions. Geophys. Res. Lett., 43, 76947700, https://doi.org/10.1002/2016GL069918.

    • Search Google Scholar
    • Export Citation
  • Smith, E. I., and Coauthors, 2018: Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature, 555, 511515, https://doi.org/10.1038/nature25967.

    • Search Google Scholar
    • Export Citation
  • Stoffel, M., and Coauthors, 2015: Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci., 8, 784788, https://doi.org/10.1038/ngeo2526.

    • Search Google Scholar
    • Export Citation
  • Svensson, A., and Coauthors, 2013: Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP). Climate Past, 9, 749766, https://doi.org/10.5194/cp-9-749-2013.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., 1992: Observations of a new SAGE II aerosol extinction mode following the eruption of Mt. Pinatubo. Geophys. Res. Lett., 19, 21792182, https://doi.org/10.1029/92GL02185.

    • Search Google Scholar
    • Export Citation
  • Timmreck, C., H.-F. Graf, S. J. Lorenz, U. Niemeier, D. Zanchettin, D. Matei, J. H. Jungclaus, and T. J. Crowley, 2010: Aerosol size confines climate response to volcanic super-eruptions. Geophys. Res. Lett., 37, L24705, https://doi.org/10.1029/2010GL045464.

    • Search Google Scholar
    • Export Citation
  • Timmreck, C., and Coauthors, 2018: The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): Motivation and experimental design. Geosci. Model Dev., 11, 25812608, https://doi.org/10.5194/gmd-11-2581-2018.

    • Search Google Scholar
    • Export Citation
  • Toohey, M., and M. Sigl, 2017: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data, 9, 809831, https://doi.org/10.5194/essd-9-809-2017.

    • Search Google Scholar
    • Export Citation
  • Toohey, M., B. Stevens, H. Schmidt, and C. Timmreck, 2016: Easy Volcanic Aerosol (EVA v1.0): An idealized forcing generator for climate simulations. Geosci. Model Dev., 9, 40494070, https://doi.org/10.5194/gmd-9-4049-2016.

    • Search Google Scholar
    • Export Citation
  • Ukhov, A., G. Stenchikov, S. Osipov, N. Krotkov, N. Gorkavyi, C. Li, O. Dubovik, and A. Lopatin, 2023: Inverse modeling of the initial stage of the 1991 Pinatubo volcanic cloud accounting for radiative feedback of volcanic ash. J. Geophys. Res. Atmos., 128, e2022JD038446, https://doi.org/10.1029/2022JD038446.

    • Search Google Scholar
    • Export Citation
  • Vandergoes, M. J., and Coauthors, 2013: A revised age for the Kawakawa/Oruanui tephra, a key marker for the last glacial maximum in New Zealand. Quat. Sci. Rev., 74, 195201, https://doi.org/10.1016/j.quascirev.2012.11.006.

    • Search Google Scholar
    • Export Citation
  • Wade, D. C., and Coauthors, 2020: Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proc. Natl. Acad. Sci. USA, 117, 26 65126 659, https://doi.org/10.1073/pnas.1919807117.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. C., and Coauthors, 1993: In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo: Effect of reactions on sulfate aerosol. Science, 261, 11401143, https://doi.org/10.1126/science.261.5125.1140.

    • Search Google Scholar
    • Export Citation
  • Wilson, R., and Coauthors, 2016: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev., 134, 118, https://doi.org/10.1016/j.quascirev.2015.12.005.

    • Search Google Scholar
    • Export Citation
  • Yost, C. L., L. J. Jackson, J. R. Stone, and A. S. Cohen, 2018: Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption. J. Hum. Evol., 116, 7594, https://doi.org/10.1016/j.jhevol.2017.11.005.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., and Coauthors, 2016: The model intercomparison project on the climatic response to volcanic forcing (VolMIP): Experimental design and forcing input data for CMIP6. Geosci. Model Dev., 9, 27012719, https://doi.org/10.5194/gmd-9-2701-2016.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., and Coauthors, 2022: Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-Pinatubo-full experiment. Geosci. Model Dev., 15, 22652292, https://doi.org/10.5194/gmd-15-2265-2022.

    • Search Google Scholar
    • Export Citation
  • Zhu, F., J. Emile-Geay, G. J. Hakim, J. King, and K. J. Anchukaitis, 2020: Resolving the differences in the simulated and reconstructed temperature response to volcanism. Geophys. Res. Lett., 47, e2019GL086908, https://doi.org/10.1029/2019GL086908.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2022: Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ., 3, 248, https://doi.org/10.1038/s43247-022-00580-w.

    • Search Google Scholar
    • Export Citation
  • Zielinski, G. A., P. A. Mayewski, L. D. Meeker, S. Whitlow, M. S. Twickler, and K. Taylor, 1996: Potential atmospheric impact of the Toba mega-eruption ∼71,000 years ago. Geophys. Res. Lett., 23, 837840, https://doi.org/10.1029/96GL00706.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4347 4347 180
Full Text Views 661 661 28
PDF Downloads 678 678 24