Trends in Atmospheric Heat Transport Since 1980

Tyler Cox aDepartment of Atmospheric Sciences, University of Washington

Search for other papers by Tyler Cox in
Current site
Google Scholar
PubMed
Close
,
Aaron Donohoe bPolar Science Center, Applied Physics Laboratory, University of Washington

Search for other papers by Aaron Donohoe in
Current site
Google Scholar
PubMed
Close
,
Kyle C. Armour cSchool of Oceanography, University of Washington
aDepartment of Atmospheric Sciences, University of Washington

Search for other papers by Kyle C. Armour in
Current site
Google Scholar
PubMed
Close
,
Dargan M. W. Frierson aDepartment of Atmospheric Sciences, University of Washington

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
, and
Gerard H. Roe dDepartment of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Gerard H. Roe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tyler Cox, tylersc@uw.edu

Abstract

We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tyler Cox, tylersc@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.8258 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Search Google Scholar
    • Export Citation
  • Baggett, C., and S. Lee, 2017: An identification of the mechanisms that lead to Arctic warming during planetary-scale and synoptic-scale wave life cycles. J. Atmos. Sci., 74, 18591877, https://doi.org/10.1175/JAS-D-16-0156.1.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. C. Fyfe, 2022: Climate models fail to capture strengthening winter-time North Atlantic jet and impacts on Europe. Sci. Adv., 8, eabn3112, https://doi.org/10.1126/sciadv.abn3112.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A. H., R. M. Ponte, G. Forget, and P. Heimbach, 2013: A comparison of atmospheric reanalysis surface products over the ocean and implications for uncertainties in air–sea boundary forcing. J. Climate, 26, 153170, https://doi.org/10.1175/JCLI-D-12-00090.1.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci., 12, 528532, https://doi.org/10.1038/s41561-019-0383-x.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2020: Linking midlatitudes eddy heat flux trends and polar amplification. npj Climate Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., Y. Ming, and J. Yuval, 2022: The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Climate Change, 12, 553557, https://doi.org/10.1038/s41558-022-01368-8.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and Coauthors, 2022: Antarctic sea-ice expansion and Southern Ocean cooling linked to tropical variability. Nat. Climate Change, 12, 461468, https://doi.org/10.1038/s41558-022-01339-z.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. Folland, J. D. Klett, M. Wang, N. Hengartner, G. Lesins, and M. K. Dubey, 2022: Annual mean arctic amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophys. Res. Lett., 49, e2022GL099371, https://doi.org/10.1029/2022GL099371.

    • Search Google Scholar
    • Export Citation
  • Cox, T., A. Donohoe, G. H. Roe, K. C. Armour, and D. M. W. Frierson, 2022: Near invariance of poleward atmospheric heat transport in response to midlatitude orography. J. Climate, 35, 40994113, https://doi.org/10.1175/JCLI-D-21-0888.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Search Google Scholar
    • Export Citation
  • Dong, Y., and Coauthors, 2021: Biased estimates of equilibrium climate sensitivity and transient climate response derived from historical CMIP6 simulations. Geophys. Res. Lett., 48, e2021GL095778, https://doi.org/10.1029/2021GL095778.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fajber, R., A. Donohoe, S. Ragen, K. C. Armour, and P. J. Kushner, 2023: Atmospheric heat transport is governed by meridional gradients in surface evaporation in modern-day earth-like climates. Proc. Natl. Acad. Sci. USA, 120, e2217202120, https://doi.org/10.1073/pnas.2217202120.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Grytsai, A. V., O. M. Evtushevsky, O. V. Agapitov, A. R. Klekociuk, and G. P. Milinevsky, 2007: Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25, 361374, https://doi.org/10.5194/angeo-25-361-2007.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, and G. J. Huffman, 2016: Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Climate Dyn., 46, 10911105, https://doi.org/10.1007/s00382-015-2634-x.

    • Search Google Scholar
    • Export Citation
  • Hahn, L. C., K. C. Armour, M. D. Zelinka, C. M. Bitz, and A. Donohoe, 2021: Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci., 9, 710036, https://doi.org/10.3389/feart.2021.710036.

    • Search Google Scholar
    • Export Citation
  • Hahn, L. C., K. C. Armour, D. S. Battisti, I. Eisenman, and C. M. Bitz, 2022: Seasonality in Arctic warming driven by sea ice effective heat capacity. J. Climate, 35, 16291642, https://doi.org/10.1175/JCLI-D-21-0626.1.

    • Search Google Scholar
    • Export Citation
  • Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, https://doi.org/10.3390/atmos12111462.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus, 51A, 5970, https://doi.org/10.3402/tellusa.v51i1.12306.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and D. O. Staley, 1973: An introduction to dynamic meteorology. Amer. J. Phys., 41, 752754, https://doi.org/10.1119/1.1987371.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., H. Huang, and C. Zhou, 2018: Widening and weakening of the Hadley circulation under global warming. Sci. Bull., 63, 640644, https://doi.org/10.1016/j.scib.2018.04.020.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, https://doi.org/10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ivanciu, I., K. Matthes, S. Wahl, J. Harlaß, and A. Biastoch, 2021: Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion. Atmos. Chem. Phys., 21, 57775806, https://doi.org/10.5194/acp-21-5777-2021.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, https://doi.org/10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and M. J. Alexander, 2013: Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalyses and TRMM. J. Climate, 26, 30133030, https://doi.org/10.1175/JCLI-D-12-00353.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., A. Simmons, F. Vamborg, and M. J. Rodwell, 2022: An evaluation of ERA5 precipitation for climate monitoring. Quart. J. Roy. Meteor. Soc., 148, 31523165, https://doi.org/10.1002/qj.4351.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Z. Song, X. Wang, and V. Misra, 2022: An ocean perspective on CMIP6 climate model evaluations. Deep-Sea Res. II, 201, 105120, https://doi.org/10.1016/j.dsr2.2022.105120.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Park, M., and S. Lee, 2019: Relationship between tropical and extratropical diabatic heating and their impact on stationary–transient wave interference. J. Atmos. Sci., 76, 26172633, https://doi.org/10.1175/JAS-D-18-0371.1.

    • Search Google Scholar
    • Export Citation
  • Park, M., and S. Lee, 2022: On the causes of synoptic-scale eddy heat flux decline. Geophys. Res. Lett., 49, e2022GL100963, https://doi.org/10.1029/2022GL100963.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 674 pp.

  • Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382, 616618, https://doi.org/10.1038/382616a0.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Search Google Scholar
    • Export Citation
  • Salustri, G., and P. H. Stone, 1983: A diagnostic study of the forcing of the Ferrel cell by eddies, with latent heat effects included. J. Atmos. Sci., 40, 11011109, https://doi.org/10.1175/1520-0469(1983)040<1101:ADSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sasamori, T., and J. Melgarejo, 1978: A parameterization of large-scale heat transport in mid-latitudes. Part I. Transient eddies. Tellus, 30 (4), 289299.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., P. Barpanda, and A. Donohoe, 2018: A moist static energy framework for zonal-mean storm-track intensity. J. Atmos. Sci., 75, 19791994, https://doi.org/10.1175/JAS-D-17-0183.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., O. Miyawaki, and A. Donohoe, 2022: Stormier Southern Hemisphere induced by topography and ocean circulation. Proc. Natl. Acad. Sci. USA, 119, e2123512119, https://doi.org/10.1073/pnas.2123512119.

    • Search Google Scholar
    • Export Citation
  • Siler, N., G. H. Roe, and K. C. Armour, 2018: Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance model. J. Climate, 31, 74817493, https://doi.org/10.1175/JCLI-D-18-0081.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, https://doi.org/10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, https://doi.org/10.1007/s00382-012-1569-8.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, https://doi.org/10.1007/s00382-014-2430-z.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., Y. Dong, C. Proistosecu, K. C. Armour, and D. S. Battisti, 2022: Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett., 49, e2022GL100011, https://doi.org/10.1029/2022GL100011.

    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
  • Zaplotnik, Ž., M. Pikovnik, and L. Boljka, 2022: Recent Hadley circulation strengthening: A trend or multidecadal variability? J. Climate, 35, 41574176, https://doi.org/10.1175/JCLI-D-21-0204.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, https://doi.org/10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 506 506 46
Full Text Views 214 214 19
PDF Downloads 260 260 22