Fast Enhancement of the Stratification in the Indian Ocean over the Past 20 Years

Suqi Peng aKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
bCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Suqi Peng in
Current site
Google Scholar
PubMed
Close
and
Qiang Wang aKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
bCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Qiang Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1485-9740
Restricted access

Abstract

Indian Ocean (IO) stratification has important effects on the air–sea interaction, ocean dynamics, and ecology. It is, therefore, of significance to investigate the changes in IO stratification. In this study, we use ensemble empirical mode decomposition (EEMD) to extract the nonlinear long-term trend in the upper IO stratification quantified by potential energy anomalies. The results show that the strengthening of the stratification is spatially and temporally nonuniform. Specifically, the trend of stratification intensified gradually before 1996, but accelerated rapidly after 1996. Temperature and salinity changes play a crucial role in the fast enhancement of stratification and its regional differences. Temperature variations dominate the stratification trend in ∼90% of the IO area, while the contributions of salinity changes are mainly in the southeast Indian Ocean (SEIO). Vertically, the rapid enhancement of stratification is caused by the trend of temperature and salt in the upper 400 m. We further perform temperature budget analysis and find that the warming trend in the upper 400 m south of the IO is mainly modulated by vertical advection and meridional advection, while the warming in the north of the IO is mainly induced by air–sea heat fluxes. Salinity budget analysis shows that ocean advection has played a primary role in modulating SEIO salinity over the past 20 years.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Wang, wangq@hhu.edu.cn

Abstract

Indian Ocean (IO) stratification has important effects on the air–sea interaction, ocean dynamics, and ecology. It is, therefore, of significance to investigate the changes in IO stratification. In this study, we use ensemble empirical mode decomposition (EEMD) to extract the nonlinear long-term trend in the upper IO stratification quantified by potential energy anomalies. The results show that the strengthening of the stratification is spatially and temporally nonuniform. Specifically, the trend of stratification intensified gradually before 1996, but accelerated rapidly after 1996. Temperature and salinity changes play a crucial role in the fast enhancement of stratification and its regional differences. Temperature variations dominate the stratification trend in ∼90% of the IO area, while the contributions of salinity changes are mainly in the southeast Indian Ocean (SEIO). Vertically, the rapid enhancement of stratification is caused by the trend of temperature and salt in the upper 400 m. We further perform temperature budget analysis and find that the warming trend in the upper 400 m south of the IO is mainly modulated by vertical advection and meridional advection, while the warming in the north of the IO is mainly induced by air–sea heat fluxes. Salinity budget analysis shows that ocean advection has played a primary role in modulating SEIO salinity over the past 20 years.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Wang, wangq@hhu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7275 MB)
Save
  • Alory, G., and G. Meyers, 2009: Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960–99). J. Climate, 22, 93113, https://doi.org/10.1175/2008JCLI2330.1.

    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Belonenko, T. V., I. L. Bashmachnikov, and A. A. Kubryakov, 2018: Horizontal advection of temperature and salinity by Rossby waves in the North Pacific. Int. J. Remote Sens., 39, 21772188, https://doi.org/10.1080/01431161.2017.1420932.

    • Search Google Scholar
    • Export Citation
  • Bourgeois, T., N. Goris, J. Schwinger, and J. F. Tjiputra, 2022: Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S. Nat. Commun., 13, 340, https://doi.org/10.1038/s41467-022-27979-5.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp.

  • Capotondi, A., M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott, 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res., 117, C04031, https://doi.org/10.1029/2011JC007409.

    • Search Google Scholar
    • Export Citation
  • Castino, F., B. Bookhagen, and M. R. Strecker, 2016: River‐discharge dynamics in the southern Central Andes and the 1976–77 global climate shift. Geophys. Res. Lett., 43, 11 67911 687, https://doi.org/10.1002/2016GL070868.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2016: Orthogonal PDO and ENSO indices. J. Climate, 29, 38833892, https://doi.org/10.1175/JCLI-D-15-0684.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., Z. Liu, S. Zhang, W. Liu, L. Dong, P. Liu, and H. Li, 2016: Reduced interdecadal variability of Atlantic meridional overturning circulation under global warming. Proc. Natl. Acad. Sci. USA, 113, 31753178, https://doi.org/10.1073/pnas.1519827113.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31, 17931825, https://doi.org/10.1175/JTECH-D-13-00197.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Cnossen, I., and C. Franzke, 2014: The role of the sun in long-term change in the F2 peak ionosphere: New insights from EEMD and numerical modeling. J. Geophys. Res. Space Phys., 119, 86108623, https://doi.org/10.1002/2014JA020048.

    • Search Google Scholar
    • Export Citation
  • Da Silva, R., and Coauthors, 2017: Salinity stratification controlled productivity variation over 300 ky in the Bay of Bengal. Sci. Rep., 7, 14439, https://doi.org/10.1038/s41598-017-14781-3.

    • Search Google Scholar
    • Export Citation
  • de Boer, G. J., J. D. Pietrzak, and J. C. Winterwerp, 2008: Using the potential energy anomaly equation to investigate tidal straining and advection of stratification in a region of freshwater influence. Ocean Modell., 22 (1–2), 111, https://doi.org/10.1016/j.ocemod.2007.12.003.

    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Qu, and G. Meyers, 2008: Interannual variability of sea surface temperature off Java and Sumatra in a global GCM. J. Climate, 21, 24512465, https://doi.org/10.1175/2007JCLI1753.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61, 10041023, https://doi.org/10.1175/1520-0469(2004)061<1004:OMLTVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, 23, 60746081, https://doi.org/10.1175/2010JCLI3654.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2014: Nonlinear climate change. Nat. Climate Change, 4, 423424, https://doi.org/10.1038/nclimate2245.

  • Franzke, C., and T. Woollings, 2011: On the persistence and predictability properties of North Atlantic climate variability. J. Climate, 24, 466472, https://doi.org/10.1175/2010JCLI3739.1.

    • Search Google Scholar
    • Export Citation
  • Gévaudan, M., J. Jouanno, F. Durand, G. Morvan, L. Renault, and G. Samson, 2021: Influence of ocean salinity stratification on the tropical Atlantic Ocean surface. Climate Dyn., 57, 321340, https://doi.org/10.1007/s00382-021-05713-z.

    • Search Google Scholar
    • Export Citation
  • Halkides, D., T. Lee, and S. Kida, 2011: Mechanisms controlling the seasonal mixed-layer temperature and salinity of the Indonesian Seas. Ocean Dyn., 61, 481495, https://doi.org/10.1007/s10236-010-0374-3.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. Reason, 2008: Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res., 113, C04035, https://doi.org/10.1029/2007JC004363.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth Century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391405, https://doi.org/10.1007/s00382-004-0433-x.

    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, and K. Ando, 2020: Coastal upwelling events, salinity stratification, and barrier layer observed along the southwestern coast of Sumatra. J. Geophys. Res. Oceans, 125, e2020JC016287, https://doi.org/10.1029/2020JC016287.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2017: Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification. Geophys. Res. Lett., 44, 14481456, https://doi.org/10.1002/2016GL072494.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and Coauthors, 2019: Interannual to decadal variability of upper-ocean salinity in the southern Indian Ocean and the role of the Indonesian throughflow. J. Climate, 32, 64036421, https://doi.org/10.1175/JCLI-D-19-0056.1.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc., 454A, 903995, https://doi.org/10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Search Google Scholar
    • Export Citation
  • Jangir, B., D. Swain, and T. V. Udaya Bhaskar, 2016: Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean. Proc. SPIE, 9882, 988228, https://doi.org/10.1117/12.2228033.

    • Search Google Scholar
    • Export Citation
  • Ji, F., Z. Wu, J. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462466, https://doi.org/10.1038/nclimate2223.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., D. M. Legler, and J. J. O’Brien, 1995: Variability of surface fluxes over the Indian Ocean: 1960–1989. Global Atmos. Ocean Syst., 3, 249272.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., R. Glasow, R. S. Smith, C. G. M. Paxton, A. C. Maycock, D. J. Lunt, C. Loptson, and P. Markwick, 2017: Global warming and ocean stratification: A potential result of large extraterrestrial impacts. Geophys. Res. Lett., 44, 38413848, https://doi.org/10.1002/2017GL073330.

    • Search Google Scholar
    • Export Citation
  • Kumari, A., S. P. Kumar, and A. Chakraborty, 2018: Seasonal and interannual variability in the barrier layer of the Bay of Bengal. J. Geophys. Res. Oceans, 123, 10011015, https://doi.org/10.1002/2017JC013213.

    • Search Google Scholar
    • Export Citation
  • Lee, T., 2004: Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophys. Res. Lett., 31, L18305, https://doi.org/10.1029/2004GL020884.

    • Search Google Scholar
    • Export Citation
  • Li, G., L. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020: Increasing ocean stratification over the past half-century. Nat. Climate Change, 10, 11161123, https://doi.org/10.1038/s41558-020-00918-2.

    • Search Google Scholar
    • Export Citation
  • Li, K., and F. Zheng, 2022: Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep-Sea Res. II, 195, 104999, https://doi.org/10.1016/j.dsr2.2021.104999.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017a: Enhanced decadal warming of the Southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, M. Ravichandran, T. Lee, and T. Shinoda, 2017b: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans, 122, 43124328, https://doi.org/10.1002/2017JC012692.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • Maes, C., and T. J. O’Kane, 2014: Seasonal variations of the upper ocean salinity stratification in the tropics. J. Geophys. Res. Oceans, 119, 17061722, https://doi.org/10.1002/2013JC009366.

    • Search Google Scholar
    • Export Citation
  • Makarim, S., J. Sprintall, Z. Liu, W. Yu, A. Santoso, X.-H. Yan, and R. D. Susanto, 2019: Previously unidentified Indonesian throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep., 9, 7364, https://doi.org/10.1038/s41598-019-43841-z.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, https://doi.org/10.1016/S0967-0645(03)00044-4.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., Y. Masumoto, and T. Horii, 2014: Meridional heat advection due to mixed Rossby gravity waves in the equatorial Indian Ocean. J. Phys. Oceanogr., 44, 343358, https://doi.org/10.1175/JPO-D-13-0141.1.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer, M., J. Zinke, W.-C. Dullo, D. Garbe-Schönberg, M. Latif, and M. E. Weber, 2017: Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates. Sci. Rep., 7, 14434, https://doi.org/10.1038/s41598-017-14352-6.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. T. Vinogradova, 2016: An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett., 43, 70527058, https://doi.org/10.1002/2016GL069857.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, C. C. Ummenhofer, H. E. Phillips, and M. Feng, 2020: Near-surface salinity reveals the oceanic sources of moisture for Australian precipitation through atmospheric moisture transport. J. Climate, 33, 67076730, https://doi.org/10.1175/JCLI-D-19-0579.1.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, C. C. Ummenhofer, H. E. Phillips, M. Feng, and M. Mishra, 2021: Improving Australian rainfall prediction using sea surface salinity. J. Climate, 34, 24732490, https://doi.org/10.1175/JCLI-D-20-0625.1.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., R. Goyal, B. Jangir, C. C. Ummenhofer, M. Feng, and M. Mishra, 2022: Interactions between a marine heatwave and Tropical Cyclone Amphan in the Bay of Bengal in 2020. Front. Climate, 4, 861477, https://doi.org/10.3389/fclim.2022.861477.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., A. Adcroft, S. M. Griffies, and R. Hallberg, 2022: A potential energy analysis of ocean surface mixed layers. J. Geophys. Res. Oceans, 127, e2021JC018140, https://doi.org/10.1029/2021JC018140.

    • Search Google Scholar
    • Export Citation
  • Resplandy, L., J. Vialard, M. Lévy, O. Aumont, and Y. Dandonneau, 2009: Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. J. Geophys. Res., 114, C07024, https://doi.org/10.1029/2008JC005246.

    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., and Coauthors, 2016: A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett., 43, 826833, https://doi.org/10.1002/2015GL066979.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., A. Sen Gupta, and M. H. England, 2010: Genesis of Indian Ocean mixed layer temperature anomalies: A heat budget analysis. J. Climate, 23, 53755403, https://doi.org/10.1175/2010JCLI3072.1.

    • Search Google Scholar
    • Export Citation
  • Savita, A., and Coauthors, 2022: Quantifying spread in spatiotemporal changes of upper-ocean heat content estimates: An internationally coordinated comparison. J. Climate, 35, 851875, https://doi.org/10.1175/JCLI-D-20-0603.1.

    • Search Google Scholar
    • Export Citation
  • Shackelford, K., C. A. DeMott, P. J. van Leeuwen, E. Thompson, and S. Hagos, 2022: Rain‐induced stratification of the equatorial Indian Ocean and its potential feedback to the atmosphere. J. Geophys. Res. Oceans, 127, e2021JC018025, https://doi.org/10.1029/2021JC018025.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., 1981: The shelf-sea fronts: Implications of their existence and behaviour. Philos. Trans. Roy. Soc., A302, 531546, https://doi.org/10.1098/rsta.1981.0181.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., and J. R. Hunter, 1974: Fronts in the Irish Sea. Nature, 250, 404406, https://doi.org/10.1038/250404a0.

  • Somavilla, R., C. González‐Pola, and J. Fernández‐Diaz, 2017: The warmer the ocean surface, the shallower the mixed layer. How much of this is true? J. Geophys. Res. Oceans, 122, 76987716, https://doi.org/10.1002/2017JC013125.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., Y. Du, S.-P. Xie, Y. Zhang, M. Wang, and Y. Kosaka, 2021: Sea surface salinity change since 1950: Internal variability versus anthropogenic forcing. J. Climate, 34, 13051319, https://doi.org/10.1175/JCLI-D-20-0331.1.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28, 15991602, https://doi.org/10.1029/2000GL011844.

    • Search Google Scholar
    • Export Citation
  • Swapna, P., R. Krishnan, and J. M. Wallace, 2014: Indian Ocean and monsoon coupled interactions in a warming environment. Climate Dyn., 42, 24392454, https://doi.org/10.1007/s00382-013-1787-8.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., J. E. Smerdon, K. J. Anchukaitis, and R. Seager, 2013: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature, 493, 389392, https://doi.org/10.1038/nature11785.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., S. A. Murty, J. Sprintall, T. Lee, and N. J. Abram, 2021: Heat and freshwater changes in the Indian Ocean region. Nat. Rev. Earth Environ., 2, 525541, https://doi.org/10.1038/s43017-021-00192-6.

    • Search Google Scholar
    • Export Citation
  • Venkataramana, V., R. K. Mishra, P. Sabu, N. Anilkumar, A. Sarkar, R. K. Naik, M. A. Soares, and L. Gawade, 2021: Stratification governs the plankton community structure and trophic interaction in the southwestern tropical Indian Ocean during boreal summer. Reg. Stud. Mar. Sci., 48, 101987, https://doi.org/10.1016/j.rsma.2021.101987.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., K. A. Emanuel, M. Lengaigne, J. Vialard, and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, https://doi.org/10.1002/2014MS000327.

    • Search Google Scholar
    • Export Citation
  • Wacongne, S., and R. Pacanowski, 1996: Seasonal heat transport in a primitive equations model of the tropical Indian Ocean. J. Phys. Oceanogr., 26, 26662699, https://doi.org/10.1175/1520-0485(1996)026<2666:SHTIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. H. Huang, 2010: Effect of the climate shift around mid-1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153158, https://doi.org/10.1002/joc.1876.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., X.-T. Zheng, Q.-W. Sun, Y. Zhang, Y. Du, and L. Liu, 2021: Decadal variability of the upper-ocean salinity in the southeast Indian Ocean: Role of local ocean–atmosphere dynamics. J. Climate, 34, 79277942, https://doi.org/10.1175/JCLI-D-21-0122.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1 (1), 141, https://doi.org/10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
  • Xu, X., L. Wang, and W. Yu, 2021: The unique mean seasonal cycle in the Indian Ocean anchors its various air-sea coupled modes across the basin. Sci. Rep., 11, 5632, https://doi.org/10.1038/s41598-021-84936-w.

    • Search Google Scholar
    • Export Citation
  • Yadidya, B., and A. D. Rao, 2022: Interannual variability of internal tides in the Andaman Sea: An effect of Indian Ocean Dipole. Sci. Rep., 12, 11104, https://doi.org/10.1038/s41598-022-15301-8.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, R., and T. Suga, 2019: Trend and variability in global upper‐ocean stratification since the 1960s. J. Geophys. Res. Oceans, 124, 89338948, https://doi.org/10.1029/2019JC015439.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Du, and W. Cai, 2018: A spurious positive Indian Ocean Dipole in 2017. Sci. Bull., 63, 11701172, https://doi.org/10.1016/j.scib.2018.08.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, K. B. Karnauskas, G. A. Meehl, A. Hu, N. Rosenbloom, and T. Shinoda, 2019: Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: An interbasin thermostat mechanism. Geophys. Res. Lett., 46, 10 88210 890, https://doi.org/10.1029/2019GL084088.

    • Search Google Scholar
    • Export Citation
  • Zhang, N., M. Feng, Y. Du, J. Lan, and S. E. Wijffels, 2016: Seasonal and interannual variations of mixed layer salinity in the southeast tropical Indian Ocean. J. Geophys. Res. Oceans, 121, 47164731, https://doi.org/10.1002/2016JC011854.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1051 1051 114
Full Text Views 178 178 1
PDF Downloads 230 230 2